Class: Numeric

Inherits:
Object show all
Includes:
Comparable
Defined in:
numeric.c,
numeric.c

Overview

Numeric is the class from which all higher-level numeric classes should inherit.

Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as Integer are implemented as immediates, which means that each Integer is a single immutable object which is always passed by value.

a = 1
1.object_id == a.object_id   #=> true

There can only ever be one instance of the integer 1, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.

Integer.new(1)                   #=> NoMethodError: undefined method `new' for Integer:Class
1.dup                            #=> 1
1.object_id == 1.dup.object_id   #=> true

For this reason, Numeric should be used when defining other numeric classes.

Classes which inherit from Numeric must implement coerce, which returns a two-member Array containing an object that has been coerced into an instance of the new class and self (see #coerce).

Inheriting classes should also implement arithmetic operator methods (+, -, * and /) and the <=> operator (see Comparable). These methods may rely on coerce to ensure interoperability with instances of other numeric classes.

class Tally < Numeric
  def initialize(string)
    @string = string
  end

  def to_s
    @string
  end

  def to_i
    @string.size
  end

  def coerce(other)
    [self.class.new('|' * other.to_i), self]
  end

  def <=>(other)
    to_i <=> other.to_i
  end

  def +(other)
    self.class.new('|' * (to_i + other.to_i))
  end

  def -(other)
    self.class.new('|' * (to_i - other.to_i))
  end

  def *(other)
    self.class.new('|' * (to_i * other.to_i))
  end

  def /(other)
    self.class.new('|' * (to_i / other.to_i))
  end
end

tally = Tally.new('||')
puts tally * 2            #=> "||||"
puts tally > 1            #=> true

What’s Here

First, what’s elsewhere. Class Numeric:

Here, class Numeric provides methods for:

Querying

  • #finite?: Returns true unless self is infinite or not a number.

  • #infinite?: Returns -1, nil or 1, depending on whether self is -Infinity<tt>, finite, or <tt>Infinity.

  • #integer?: Returns whether self is an integer.

  • #negative?: Returns whether self is negative.

  • #nonzero?: Returns whether self is not zero.

  • #positive?: Returns whether self is positive.

  • #real?: Returns whether self is a real value.

  • #zero?: Returns whether self is zero.

Comparing

  • #<=>: Returns:

    • -1 if self is less than the given value.

    • 0 if self is equal to the given value.

    • 1 if self is greater than the given value.

    • nil if self and the given value are not comparable.

  • #eql?: Returns whether self and the given value have the same value and type.

Converting

  • #% (aliased as #modulo): Returns the remainder of self divided by the given value.

  • #-@: Returns the value of self, negated.

  • #abs (aliased as #magnitude): Returns the absolute value of self.

  • #abs2: Returns the square of self.

  • #angle (aliased as #arg and #phase): Returns 0 if self is positive, Math::PI otherwise.

  • #ceil: Returns the smallest number greater than or equal to self, to a given precision.

  • #coerce: Returns array [coerced_self, coerced_other] for the given other value.

  • #conj (aliased as #conjugate): Returns the complex conjugate of self.

  • #denominator: Returns the denominator (always positive) of the Rational representation of self.

  • #div: Returns the value of self divided by the given value and converted to an integer.

  • #divmod: Returns array [quotient, modulus] resulting from dividing self the given divisor.

  • #fdiv: Returns the Float result of dividing self by the given divisor.

  • #floor: Returns the largest number less than or equal to self, to a given precision.

  • #i: Returns the Complex object Complex(0, self). the given value.

  • #imaginary (aliased as #imag): Returns the imaginary part of the self.

  • #numerator: Returns the numerator of the Rational representation of self; has the same sign as self.

  • #polar: Returns the array [self.abs, self.arg].

  • #quo: Returns the value of self divided by the given value.

  • #real: Returns the real part of self.

  • #rect (aliased as #rectangular): Returns the array [self, 0].

  • #remainder: Returns self-arg*(self/arg).truncate for the given arg.

  • #round: Returns the value of self rounded to the nearest value for the given a precision.

  • #to_c: Returns the Complex representation of self.

  • #to_int: Returns the Integer representation of self, truncating if necessary.

  • #truncate: Returns self truncated (toward zero) to a given precision.

Other

  • #clone: Returns self; does not allow freezing.

  • #dup (aliased as #+@): Returns self.

  • #step: Invokes the given block with the sequence of specified numbers.

Direct Known Subclasses

Complex, Float, Integer, Rational

Instance Method Summary collapse

Methods included from Comparable

#<, #<=, #==, #>, #>=, #between?, #clamp

Instance Method Details

#%(other) ⇒ Object

Returns self modulo other as a real number.

Of the Core and Standard Library classes, only Rational uses this implementation.

For Rational r and real number n, these expressions are equivalent:

r % n
r-n*(r/n).floor
r.divmod(n)[1]

See Numeric#divmod.

Examples:

r = Rational(1, 2)    # => (1/2)
r2 = Rational(2, 3)   # => (2/3)
r % r2                # => (1/2)
r % 2                 # => (1/2)
r % 2.0               # => 0.5

r = Rational(301,100) # => (301/100)
r2 = Rational(7,5)    # => (7/5)
r % r2                # => (21/100)
r % -r2               # => (-119/100)
(-r) % r2             # => (119/100)
(-r) %-r2             # => (-21/100)


699
700
701
702
703
704
705
# File 'numeric.c', line 699

static VALUE
num_modulo(VALUE x, VALUE y)
{
    VALUE q = num_funcall1(x, id_div, y);
    return rb_funcall(x, '-', 1,
                      rb_funcall(y, '*', 1, q));
}

#+self

Returns self.

Returns:

  • (self)


582
583
584
585
586
# File 'numeric.c', line 582

static VALUE
num_uplus(VALUE num)
{
    return num;
}

#-Numeric

Unary Minus—Returns the receiver, negated.

Returns:



615
616
617
618
619
620
621
622
623
624
# File 'numeric.c', line 615

static VALUE
num_uminus(VALUE num)
{
    VALUE zero;

    zero = INT2FIX(0);
    do_coerce(&zero, &num, TRUE);

    return num_funcall1(zero, '-', num);
}

#<=>(other) ⇒ nil

Returns zero if self is the same as other, nil otherwise.

No subclass in the Ruby Core or Standard Library uses this implementation.

Returns:

  • (nil)


1580
1581
1582
1583
1584
1585
# File 'numeric.c', line 1580

static VALUE
num_cmp(VALUE x, VALUE y)
{
    if (x == y) return INT2FIX(0);
    return Qnil;
}

#absNumeric

Returns the absolute value of self.

12.abs        #=> 12
(-34.56).abs  #=> 34.56
-34.56.abs    #=> 34.56

Returns:



807
808
809
810
811
812
813
814
# File 'numeric.c', line 807

static VALUE
num_abs(VALUE num)
{
    if (rb_num_negative_int_p(num)) {
        return num_funcall0(num, idUMinus);
    }
    return num;
}

#abs2Object

Returns the square of self.



2376
2377
2378
2379
2380
# File 'complex.c', line 2376

static VALUE
numeric_abs2(VALUE self)
{
    return f_mul(self, self);
}

#arg0, Math::PI

Returns zero if self is positive, Math::PI otherwise.

Returns:



2388
2389
2390
2391
2392
2393
2394
# File 'complex.c', line 2388

static VALUE
numeric_arg(VALUE self)
{
    if (f_positive_p(self))
        return INT2FIX(0);
    return DBL2NUM(M_PI);
}

#arg0, Math::PI

Returns zero if self is positive, Math::PI otherwise.

Returns:



2388
2389
2390
2391
2392
2393
2394
# File 'complex.c', line 2388

static VALUE
numeric_arg(VALUE self)
{
    if (f_positive_p(self))
        return INT2FIX(0);
    return DBL2NUM(M_PI);
}

#ceil(digits = 0) ⇒ Integer, Float

Returns the smallest number that is greater than or equal to self with a precision of digits decimal digits.

Numeric implements this by converting self to a Float and invoking Float#ceil.

Returns:



2679
2680
2681
2682
2683
# File 'numeric.c', line 2679

static VALUE
num_ceil(int argc, VALUE *argv, VALUE num)
{
    return flo_ceil(argc, argv, rb_Float(num));
}

#clone(freeze: true) ⇒ self

Returns self.

Raises an exception if the value for freeze is neither true nor nil.

Related: Numeric#dup.

Returns:

  • (self)


546
547
548
549
550
# File 'numeric.c', line 546

static VALUE
num_clone(int argc, VALUE *argv, VALUE x)
{
    return rb_immutable_obj_clone(argc, argv, x);
}

#coerce(other) ⇒ Array

Returns a 2-element array containing two numeric elements, formed from the two operands self and other, of a common compatible type.

Of the Core and Standard Library classes, Integer, Rational, and Complex use this implementation.

Examples:

i = 2                    # => 2
i.coerce(3)              # => [3, 2]
i.coerce(3.0)            # => [3.0, 2.0]
i.coerce(Rational(1, 2)) # => [0.5, 2.0]
i.coerce(Complex(3, 4))  # Raises RangeError.

r = Rational(5, 2)       # => (5/2)
r.coerce(2)              # => [(2/1), (5/2)]
r.coerce(2.0)            # => [2.0, 2.5]
r.coerce(Rational(2, 3)) # => [(2/3), (5/2)]
r.coerce(Complex(3, 4))  # => [(3+4i), ((5/2)+0i)]

c = Complex(2, 3)        # => (2+3i)
c.coerce(2)              # => [(2+0i), (2+3i)]
c.coerce(2.0)            # => [(2.0+0i), (2+3i)]
c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)]
c.coerce(Complex(3, 4))  # => [(3+4i), (2+3i)]

Raises an exception if any type conversion fails.

Returns:



430
431
432
433
434
435
436
437
438
# File 'numeric.c', line 430

static VALUE
num_coerce(VALUE x, VALUE y)
{
    if (CLASS_OF(x) == CLASS_OF(y))
        return rb_assoc_new(y, x);
    x = rb_Float(x);
    y = rb_Float(y);
    return rb_assoc_new(y, x);
}

#denominatorInteger

Returns the denominator (always positive).

Returns:



2022
2023
2024
2025
2026
# File 'rational.c', line 2022

static VALUE
numeric_denominator(VALUE self)
{
    return f_denominator(f_to_r(self));
}

#div(other) ⇒ Integer

Returns the quotient self/other as an integer (via floor), using method / in the derived class of self. (Numeric itself does not define method /.)

Of the Core and Standard Library classes, Only Float and Rational use this implementation.

Returns:



658
659
660
661
662
663
# File 'numeric.c', line 658

static VALUE
num_div(VALUE x, VALUE y)
{
    if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
    return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
}

#divmod(other) ⇒ Array

Returns a 2-element array [q, r], where

q = (self/other).floor                  # Quotient
r = self % other                        # Remainder

Of the Core and Standard Library classes, only Rational uses this implementation.

Examples:

Rational(11, 1).divmod(4)               # => [2, (3/1)]
Rational(11, 1).divmod(-4)              # => [-3, (-1/1)]
Rational(-11, 1).divmod(4)              # => [-3, (1/1)]
Rational(-11, 1).divmod(-4)             # => [2, (-3/1)]

Rational(12, 1).divmod(4)               # => [3, (0/1)]
Rational(12, 1).divmod(-4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(-4)             # => [3, (0/1)]

Rational(13, 1).divmod(4.0)             # => [3, 1.0]
Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]

Returns:



789
790
791
792
793
# File 'numeric.c', line 789

static VALUE
num_divmod(VALUE x, VALUE y)
{
    return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}

#dupself

Returns self.

Related: Numeric#clone.

Returns:

  • (self)


565
566
567
568
569
# File 'numeric.c', line 565

static VALUE
num_dup(VALUE x)
{
    return x;
}

#eql?(other) ⇒ Boolean

Returns true if self and other are the same type and have equal values.

Of the Core and Standard Library classes, only Integer, Rational, and Complex use this implementation.

Examples:

1.eql?(1)              # => true
1.eql?(1.0)            # => false
1.eql?(Rational(1, 1)) # => false
1.eql?(Complex(1, 0))  # => false

Method eql? is different from == in that eql? requires matching types, while == does not.

Returns:

  • (Boolean)


1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
# File 'numeric.c', line 1558

static VALUE
num_eql(VALUE x, VALUE y)
{
    if (TYPE(x) != TYPE(y)) return Qfalse;

    if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_eql(x, y);
    }

    return rb_equal(x, y);
}

#fdiv(other) ⇒ Float

Returns the quotient self/other as a float, using method / in the derived class of self. (Numeric itself does not define method /.)

Of the Core and Standard Library classes, only BigDecimal uses this implementation.

Returns:



639
640
641
642
643
# File 'numeric.c', line 639

static VALUE
num_fdiv(VALUE x, VALUE y)
{
    return rb_funcall(rb_Float(x), '/', 1, y);
}

#floor(digits = 0) ⇒ Integer, Float

Returns the largest number that is less than or equal to self with a precision of digits decimal digits.

Numeric implements this by converting self to a Float and invoking Float#floor.

Returns:



2662
2663
2664
2665
2666
# File 'numeric.c', line 2662

static VALUE
num_floor(int argc, VALUE *argv, VALUE num)
{
    return flo_floor(argc, argv, rb_Float(num));
}

#iObject

Returns Complex(0, self):

2.i              # => (0+2i)
-2.i             # => (0-2i)
2.0.i            # => (0+2.0i)
Rational(1, 2).i # => (0+(1/2)*i)
Complex(3, 4).i  # Raises NoMethodError.


602
603
604
605
606
# File 'numeric.c', line 602

static VALUE
num_imaginary(VALUE num)
{
    return rb_complex_new(INT2FIX(0), num);
}

#absNumeric

Returns the absolute value of self.

12.abs        #=> 12
(-34.56).abs  #=> 34.56
-34.56.abs    #=> 34.56

Returns:



807
808
809
810
811
812
813
814
# File 'numeric.c', line 807

static VALUE
num_abs(VALUE num)
{
    if (rb_num_negative_int_p(num)) {
        return num_funcall0(num, idUMinus);
    }
    return num;
}

#%(other) ⇒ Object

Returns self modulo other as a real number.

Of the Core and Standard Library classes, only Rational uses this implementation.

For Rational r and real number n, these expressions are equivalent:

r % n
r-n*(r/n).floor
r.divmod(n)[1]

See Numeric#divmod.

Examples:

r = Rational(1, 2)    # => (1/2)
r2 = Rational(2, 3)   # => (2/3)
r % r2                # => (1/2)
r % 2                 # => (1/2)
r % 2.0               # => 0.5

r = Rational(301,100) # => (301/100)
r2 = Rational(7,5)    # => (7/5)
r % r2                # => (21/100)
r % -r2               # => (-119/100)
(-r) % r2             # => (119/100)
(-r) %-r2             # => (-21/100)


699
700
701
702
703
704
705
# File 'numeric.c', line 699

static VALUE
num_modulo(VALUE x, VALUE y)
{
    VALUE q = num_funcall1(x, id_div, y);
    return rb_funcall(x, '-', 1,
                      rb_funcall(y, '*', 1, q));
}

#negative?Boolean

Returns true if self is less than 0, false otherwise.

Returns:

  • (Boolean)


933
934
935
936
937
# File 'numeric.c', line 933

static VALUE
num_negative_p(VALUE num)
{
    return RBOOL(rb_num_negative_int_p(num));
}

#nonzero?self?

Returns self if self is not a zero value, nil otherwise; uses method zero? for the evaluation.

The returned self allows the method to be chained:

a = %w[z Bb bB bb BB a aA Aa AA A]
a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
# => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]

Of the Core and Standard Library classes, Integer, Float, Rational, and Complex use this implementation.

Returns:

  • (self, nil)


867
868
869
870
871
872
873
874
# File 'numeric.c', line 867

static VALUE
num_nonzero_p(VALUE num)
{
    if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
        return Qnil;
    }
    return num;
}

#numeratorInteger

Returns the numerator.

Returns:



2010
2011
2012
2013
2014
# File 'rational.c', line 2010

static VALUE
numeric_numerator(VALUE self)
{
    return f_numerator(f_to_r(self));
}

#arg0, Math::PI

Returns zero if self is positive, Math::PI otherwise.

Returns:



2388
2389
2390
2391
2392
2393
2394
# File 'complex.c', line 2388

static VALUE
numeric_arg(VALUE self)
{
    if (f_positive_p(self))
        return INT2FIX(0);
    return DBL2NUM(M_PI);
}

#polarArray

Returns array [self.abs, self.arg].

Returns:



2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
# File 'complex.c', line 2414

static VALUE
numeric_polar(VALUE self)
{
    VALUE abs, arg;

    if (RB_INTEGER_TYPE_P(self)) {
        abs = rb_int_abs(self);
        arg = numeric_arg(self);
    }
    else if (RB_FLOAT_TYPE_P(self)) {
        abs = rb_float_abs(self);
        arg = float_arg(self);
    }
    else if (RB_TYPE_P(self, T_RATIONAL)) {
        abs = rb_rational_abs(self);
        arg = numeric_arg(self);
    }
    else {
        abs = f_abs(self);
        arg = f_arg(self);
    }
    return rb_assoc_new(abs, arg);
}

#positive?Boolean

Returns true if self is greater than 0, false otherwise.

Returns:

  • (Boolean)


909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
# File 'numeric.c', line 909

static VALUE
num_positive_p(VALUE num)
{
    const ID mid = '>';

    if (FIXNUM_P(num)) {
        if (method_basic_p(rb_cInteger))
            return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));
    }
    else if (RB_BIGNUM_TYPE_P(num)) {
        if (method_basic_p(rb_cInteger))
            return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));
    }
    return rb_num_compare_with_zero(num, mid);
}

#quo(int_or_rat) ⇒ Object #quo(flo) ⇒ Object

Returns the most exact division (rational for integers, float for floats).



2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
# File 'rational.c', line 2037

VALUE
rb_numeric_quo(VALUE x, VALUE y)
{
    if (RB_TYPE_P(x, T_COMPLEX)) {
        return rb_complex_div(x, y);
    }

    if (RB_FLOAT_TYPE_P(y)) {
        return rb_funcallv(x, idFdiv, 1, &y);
    }

    x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
    return rb_rational_div(x, y);
}

#rectArray

Returns array [self, 0].

Returns:



2402
2403
2404
2405
2406
# File 'complex.c', line 2402

static VALUE
numeric_rect(VALUE self)
{
    return rb_assoc_new(self, INT2FIX(0));
}

#rectArray

Returns array [self, 0].

Returns:



2402
2403
2404
2405
2406
# File 'complex.c', line 2402

static VALUE
numeric_rect(VALUE self)
{
    return rb_assoc_new(self, INT2FIX(0));
}

#remainder(other) ⇒ Object

Returns the remainder after dividing self by other.

Of the Core and Standard Library classes, only Float and Rational use this implementation.

Examples:

11.0.remainder(4)              # => 3.0
11.0.remainder(-4)             # => 3.0
-11.0.remainder(4)             # => -3.0
-11.0.remainder(-4)            # => -3.0

12.0.remainder(4)              # => 0.0
12.0.remainder(-4)             # => 0.0
-12.0.remainder(4)             # => -0.0
-12.0.remainder(-4)            # => -0.0

13.0.remainder(4.0)            # => 1.0
13.0.remainder(Rational(4, 1)) # => 1.0

Rational(13, 1).remainder(4)   # => (1/1)
Rational(13, 1).remainder(-4)  # => (1/1)
Rational(-13, 1).remainder(4)  # => (-1/1)
Rational(-13, 1).remainder(-4) # => (-1/1)


738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
# File 'numeric.c', line 738

static VALUE
num_remainder(VALUE x, VALUE y)
{
    if (!rb_obj_is_kind_of(y, rb_cNumeric)) {
        do_coerce(&x, &y, TRUE);
    }
    VALUE z = num_funcall1(x, '%', y);

    if ((!rb_equal(z, INT2FIX(0))) &&
        ((rb_num_negative_int_p(x) &&
          rb_num_positive_int_p(y)) ||
         (rb_num_positive_int_p(x) &&
          rb_num_negative_int_p(y)))) {
        if (RB_FLOAT_TYPE_P(y)) {
            if (isinf(RFLOAT_VALUE(y))) {
                return x;
            }
        }
        return rb_funcall(z, '-', 1, y);
    }
    return z;
}

#round(digits = 0) ⇒ Integer, Float

Returns self rounded to the nearest value with a precision of digits decimal digits.

Numeric implements this by converting self to a Float and invoking Float#round.

Returns:



2696
2697
2698
2699
2700
# File 'numeric.c', line 2696

static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
    return flo_round(argc, argv, rb_Float(num));
}

#singleton_method_added(name) ⇒ Object

:nodoc:

Trap attempts to add methods to Numeric objects. Always raises a TypeError.

Numerics should be values; singleton_methods should not be added to them.



520
521
522
523
524
525
526
527
528
529
530
531
532
# File 'numeric.c', line 520

static VALUE
num_sadded(VALUE x, VALUE name)
{
    ID mid = rb_to_id(name);
    /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
    rb_remove_method_id(rb_singleton_class(x), mid);
    rb_raise(rb_eTypeError,
             "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
             rb_id2str(mid),
             rb_obj_class(x));

    UNREACHABLE_RETURN(Qnil);
}

#step(to = nil, by = 1) {|n| ... } ⇒ self #step(to = nil, by = 1) ⇒ Object #step(to = nil, by: 1) {|n| ... } ⇒ self #step(to = nil, by: 1) ⇒ Object #step(by: 1, to: ) {|n| ... } ⇒ self #step(by: 1, to: ) ⇒ Object #step(by: , to: nil) {|n| ... } ⇒ self #step(by: , to: nil) ⇒ Object

Generates a sequence of numbers; with a block given, traverses the sequence.

Of the Core and Standard Library classes, Integer, Float, and Rational use this implementation.

A quick example:

squares = []
1.step(by: 2, to: 10) {|i| squares.push(i*i) }
squares # => [1, 9, 25, 49, 81]

The generated sequence:

  • Begins with self.

  • Continues at intervals of by (which may not be zero).

  • Ends with the last number that is within or equal to to; that is, less than or equal to to if by is positive, greater than or equal to to if by is negative. If to is nil, the sequence is of infinite length.

If a block is given, calls the block with each number in the sequence; returns self. If no block is given, returns an Enumerator::ArithmeticSequence.

Keyword Arguments

With keyword arguments by and to, their values (or defaults) determine the step and limit:

# Both keywords given.
squares = []
4.step(by: 2, to: 10) {|i| squares.push(i*i) }    # => 4
squares # => [16, 36, 64, 100]
cubes = []
3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
cubes   # => [27.0, 3.375, 0.0, -3.375, -27.0]
squares = []
1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]

squares = []
Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]

# Only keyword to given.
squares = []
4.step(to: 10) {|i| squares.push(i*i) }           # => 4
squares # => [16, 25, 36, 49, 64, 81, 100]
# Only by given.

# Only keyword by given
squares = []
4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
squares # => [16, 36, 64, 100, 144]

# No block given.
e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
e.class                      # => Enumerator::ArithmeticSequence

Positional Arguments

With optional positional arguments to and by, their values (or defaults) determine the step and limit:

squares = []
4.step(10, 2) {|i| squares.push(i*i) }    # => 4
squares # => [16, 36, 64, 100]
squares = []
4.step(10) {|i| squares.push(i*i) }
squares # => [16, 25, 36, 49, 64, 81, 100]
squares = []
4.step {|i| squares.push(i*i); break if i > 10 }  # => nil
squares # => [16, 25, 36, 49, 64, 81, 100, 121]

Implementation Notes

If all the arguments are integers, the loop operates using an integer counter.

If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*Float::EPSILON) + 1 times, where n = (limit - self)/step.

Overloads:

  • #step(to = nil, by = 1) {|n| ... } ⇒ self

    Yields:

    • (n)

    Returns:

    • (self)
  • #step(to = nil, by: 1) {|n| ... } ⇒ self

    Yields:

    • (n)

    Returns:

    • (self)
  • #step(by: 1, to: ) {|n| ... } ⇒ self

    Yields:

    • (n)

    Returns:

    • (self)
  • #step(by: , to: nil) {|n| ... } ⇒ self

    Yields:

    • (n)

    Returns:

    • (self)


3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
# File 'numeric.c', line 3033

static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
    VALUE to, step;
    int desc, inf;

    if (!rb_block_given_p()) {
        VALUE by = Qundef;

        num_step_extract_args(argc, argv, &to, &step, &by);
        if (!UNDEF_P(by)) {
            step = by;
        }
        if (NIL_P(step)) {
            step = INT2FIX(1);
        }
        else if (rb_equal(step, INT2FIX(0))) {
            rb_raise(rb_eArgError, "step can't be 0");
        }
        if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
            rb_obj_is_kind_of(step, rb_cNumeric)) {
            return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
                                    num_step_size, from, to, step, FALSE);
        }

        return SIZED_ENUMERATOR_KW(from, 2, ((VALUE [2]){to, step}), num_step_size, FALSE);
    }

    desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
    if (rb_equal(step, INT2FIX(0))) {
        inf = 1;
    }
    else if (RB_FLOAT_TYPE_P(to)) {
        double f = RFLOAT_VALUE(to);
        inf = isinf(f) && (signbit(f) ? desc : !desc);
    }
    else inf = 0;

    if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
        long i = FIX2LONG(from);
        long diff = FIX2LONG(step);

        if (inf) {
            for (;; i += diff)
                rb_yield(LONG2FIX(i));
        }
        else {
            long end = FIX2LONG(to);

            if (desc) {
                for (; i >= end; i += diff)
                    rb_yield(LONG2FIX(i));
            }
            else {
                for (; i <= end; i += diff)
                    rb_yield(LONG2FIX(i));
            }
        }
    }
    else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
        VALUE i = from;

        if (inf) {
            for (;; i = rb_funcall(i, '+', 1, step))
                rb_yield(i);
        }
        else {
            ID cmp = desc ? '<' : '>';

            for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
                rb_yield(i);
        }
    }
    return from;
}

#to_cObject

Returns self as a Complex object.



1939
1940
1941
1942
1943
# File 'complex.c', line 1939

static VALUE
numeric_to_c(VALUE self)
{
    return rb_complex_new1(self);
}

#to_intInteger

Returns self as an integer; converts using method to_i in the derived class.

Of the Core and Standard Library classes, only Rational and Complex use this implementation.

Examples:

Rational(1, 2).to_int # => 0
Rational(2, 1).to_int # => 2
Complex(2, 0).to_int  # => 2
Complex(2, 1)         # Raises RangeError (non-zero imaginary part)

Returns:



895
896
897
898
899
# File 'numeric.c', line 895

static VALUE
num_to_int(VALUE num)
{
    return num_funcall0(num, id_to_i);
}

#truncate(digits = 0) ⇒ Integer, Float

Returns self truncated (toward zero) to a precision of digits decimal digits.

Numeric implements this by converting self to a Float and invoking Float#truncate.

Returns:



2713
2714
2715
2716
2717
# File 'numeric.c', line 2713

static VALUE
num_truncate(int argc, VALUE *argv, VALUE num)
{
    return flo_truncate(argc, argv, rb_Float(num));
}

#zero?Boolean

Returns true if zero has a zero value, false otherwise.

Of the Core and Standard Library classes, only Rational and Complex use this implementation.

Returns:

  • (Boolean)


827
828
829
830
831
# File 'numeric.c', line 827

static VALUE
num_zero_p(VALUE num)
{
    return rb_equal(num, INT2FIX(0));
}