Class: Array

Inherits:
Object show all
Includes:
Enumerable
Defined in:
array.c

Overview

An Array is an ordered, integer-indexed collection of objects, called elements. Any object (even another array) may be an array element, and an array can contain objects of different types.

Array Indexes

Array indexing starts at 0, as in C or Java.

A positive index is an offset from the first element:

  • Index 0 indicates the first element.

  • Index 1 indicates the second element.

A negative index is an offset, backwards, from the end of the array:

  • Index -1 indicates the last element.

  • Index -2 indicates the next-to-last element.

A non-negative index is in range if and only if it is smaller than the size of the array. For a 3-element array:

  • Indexes 0 through 2 are in range.

  • Index 3 is out of range.

A negative index is in range if and only if its absolute value is not larger than the size of the array. For a 3-element array:

  • Indexes -1 through -3 are in range.

  • Index -4 is out of range.

Although the effective index into an array is always an integer, some methods (both within and outside of class Array) accept one or more non-integer arguments that are integer-convertible objects.

Creating Arrays

You can create an Array object explicitly with:

  • An array literal:

    [1, 'one', :one, [2, 'two', :two]]
    
  • A %w or %W: string-array Literal:

    %w[foo bar baz] # => ["foo", "bar", "baz"]
    %w[1 % *]       # => ["1", "%", "*"]
    
  • A %i pr %I: symbol-array Literal:

    %i[foo bar baz] # => [:foo, :bar, :baz]
    %i[1 % *]       # => [:"1", :%, :*]
    
  • Method Kernel#Array:

    Array(["a", "b"])             # => ["a", "b"]
    Array(1..5)                   # => [1, 2, 3, 4, 5]
    Array(key: :value)            # => [[:key, :value]]
    Array(nil)                    # => []
    Array(1)                      # => [1]
    Array({:a => "a", :b => "b"}) # => [[:a, "a"], [:b, "b"]]
    
  • Method Array.new:

    Array.new               # => []
    Array.new(3)            # => [nil, nil, nil]
    Array.new(4) {Hash.new} # => [{}, {}, {}, {}]
    Array.new(3, true)      # => [true, true, true]
    

    Note that the last example above populates the array with references to the same object. This is recommended only in cases where that object is a natively immutable object such as a symbol, a numeric, nil, true, or false.

    Another way to create an array with various objects, using a block; this usage is safe for mutable objects such as hashes, strings or other arrays:

    Array.new(4) {|i| i.to_s } # => ["0", "1", "2", "3"]
    

    Here is a way to create a multi-dimensional array:

    Array.new(3) {Array.new(3)}
    # => [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]
    

A number of Ruby methods, both in the core and in the standard library, provide instance method to_a, which converts an object to an array.

  • ARGF#to_a

  • Array#to_a

  • Enumerable#to_a

  • Hash#to_a

  • MatchData#to_a

  • NilClass#to_a

  • OptionParser#to_a

  • Range#to_a

  • Set#to_a

  • Struct#to_a

  • Time#to_a

  • Benchmark::Tms#to_a

  • CSV::Table#to_a

  • Enumerator::Lazy#to_a

  • Gem::List#to_a

  • Gem::NameTuple#to_a

  • Gem::Platform#to_a

  • Gem::RequestSet::Lockfile::Tokenizer#to_a

  • Gem::SourceList#to_a

  • OpenSSL::X509::Extension#to_a

  • OpenSSL::X509::Name#to_a

  • Racc::ISet#to_a

  • Rinda::RingFinger#to_a

  • Ripper::Lexer::Elem#to_a

  • RubyVM::InstructionSequence#to_a

  • YAML::DBM#to_a

Example Usage

In addition to the methods it mixes in through the Enumerable module, the Array class has proprietary methods for accessing, searching and otherwise manipulating arrays.

Some of the more common ones are illustrated below.

Accessing Elements

Elements in an array can be retrieved using the Array#[] method. It can take a single integer argument (a numeric index), a pair of arguments (start and length) or a range. Negative indices start counting from the end, with -1 being the last element.

arr = [1, 2, 3, 4, 5, 6]
arr[2]    #=> 3
arr[100]  #=> nil
arr[-3]   #=> 4
arr[2, 3] #=> [3, 4, 5]
arr[1..4] #=> [2, 3, 4, 5]
arr[1..-3] #=> [2, 3, 4]

Another way to access a particular array element is by using the #at method

arr.at(0) #=> 1

The #slice method works in an identical manner to Array#[].

To raise an error for indices outside of the array bounds or else to provide a default value when that happens, you can use #fetch.

arr = ['a', 'b', 'c', 'd', 'e', 'f']
arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
arr.fetch(100, "oops") #=> "oops"

The special methods #first and #last will return the first and last elements of an array, respectively.

arr.first #=> 1
arr.last  #=> 6

To return the first n elements of an array, use #take

arr.take(3) #=> [1, 2, 3]

#drop does the opposite of #take, by returning the elements after n elements have been dropped:

arr.drop(3) #=> [4, 5, 6]

Obtaining Information about an Array

Arrays keep track of their own length at all times. To query an array about the number of elements it contains, use #length, #count or #size.

browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
browsers.length #=> 5
browsers.count #=> 5

To check whether an array contains any elements at all

browsers.empty? #=> false

To check whether a particular item is included in the array

browsers.include?('Konqueror') #=> false

Adding Items to Arrays

Items can be added to the end of an array by using either #push or #<<

arr = [1, 2, 3, 4]
arr.push(5) #=> [1, 2, 3, 4, 5]
arr << 6    #=> [1, 2, 3, 4, 5, 6]

#unshift will add a new item to the beginning of an array.

arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]

With #insert you can add a new element to an array at any position.

arr.insert(3, 'apple')  #=> [0, 1, 2, 'apple', 3, 4, 5, 6]

Using the #insert method, you can also insert multiple values at once:

arr.insert(3, 'orange', 'pear', 'grapefruit')
#=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]

Removing Items from an Array

The method #pop removes the last element in an array and returns it:

arr =  [1, 2, 3, 4, 5, 6]
arr.pop #=> 6
arr #=> [1, 2, 3, 4, 5]

To retrieve and at the same time remove the first item, use #shift:

arr.shift #=> 1
arr #=> [2, 3, 4, 5]

To delete an element at a particular index:

arr.delete_at(2) #=> 4
arr #=> [2, 3, 5]

To delete a particular element anywhere in an array, use #delete:

arr = [1, 2, 2, 3]
arr.delete(2) #=> 2
arr #=> [1,3]

A useful method if you need to remove nil values from an array is #compact:

arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact  #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, 'bar', 7, 'baz']

Another common need is to remove duplicate elements from an array.

It has the non-destructive #uniq, and destructive method #uniq!

arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]

Iterating over Arrays

Like all classes that include the Enumerable module, Array has an each method, which defines what elements should be iterated over and how. In case of Array’s #each, all elements in the Array instance are yielded to the supplied block in sequence.

Note that this operation leaves the array unchanged.

arr = [1, 2, 3, 4, 5]
arr.each {|a| print a -= 10, " "}
# prints: -9 -8 -7 -6 -5
#=> [1, 2, 3, 4, 5]

Another sometimes useful iterator is #reverse_each which will iterate over the elements in the array in reverse order.

words = %w[first second third fourth fifth sixth]
str = ""
words.reverse_each {|word| str += "#{word} "}
p str #=> "sixth fifth fourth third second first "

The #map method can be used to create a new array based on the original array, but with the values modified by the supplied block:

arr.map {|a| 2*a}     #=> [2, 4, 6, 8, 10]
arr                   #=> [1, 2, 3, 4, 5]
arr.map! {|a| a**2}   #=> [1, 4, 9, 16, 25]
arr                   #=> [1, 4, 9, 16, 25]

Selecting Items from an Array

Elements can be selected from an array according to criteria defined in a block. The selection can happen in a destructive or a non-destructive manner. While the destructive operations will modify the array they were called on, the non-destructive methods usually return a new array with the selected elements, but leave the original array unchanged.

Non-destructive Selection

arr = [1, 2, 3, 4, 5, 6]
arr.select {|a| a > 3}       #=> [4, 5, 6]
arr.reject {|a| a < 3}       #=> [3, 4, 5, 6]
arr.drop_while {|a| a < 4}   #=> [4, 5, 6]
arr                          #=> [1, 2, 3, 4, 5, 6]

Destructive Selection

#select! and #reject! are the corresponding destructive methods to #select and #reject

Similar to #select vs. #reject, #delete_if and #keep_if have the exact opposite result when supplied with the same block:

arr.delete_if {|a| a < 4}   #=> [4, 5, 6]
arr                         #=> [4, 5, 6]

arr = [1, 2, 3, 4, 5, 6]
arr.keep_if {|a| a < 4}   #=> [1, 2, 3]
arr                       #=> [1, 2, 3]

What’s Here

First, what’s elsewhere. Class Array:

Here, class Array provides methods that are useful for:

Methods for Creating an Array

  • ::[]: Returns a new array populated with given objects.

  • ::new: Returns a new array.

  • ::try_convert: Returns a new array created from a given object.

Methods for Querying

  • #length, #size: Returns the count of elements.

  • #include?: Returns whether any element == a given object.

  • #empty?: Returns whether there are no elements.

  • #all?: Returns whether all elements meet a given criterion.

  • #any?: Returns whether any element meets a given criterion.

  • #none?: Returns whether no element == a given object.

  • #one?: Returns whether exactly one element == a given object.

  • #count: Returns the count of elements that meet a given criterion.

  • #find_index, #index: Returns the index of the first element that meets a given criterion.

  • #rindex: Returns the index of the last element that meets a given criterion.

  • #hash: Returns the integer hash code.

Methods for Comparing

  • #<=>: Returns -1, 0, or 1 * as self is less than, equal to, or greater than a given object.

  • #==: Returns whether each element in self is == to the corresponding element in a given object.

  • #eql?: Returns whether each element in self is eql? to the corresponding element in a given object.

Methods for Fetching

These methods do not modify self.

  • #[]: Returns one or more elements.

  • #fetch: Returns the element at a given offset.

  • #first: Returns one or more leading elements.

  • #last: Returns one or more trailing elements.

  • #max: Returns one or more maximum-valued elements, as determined by <=> or a given block.

  • #min: Returns one or more minimum-valued elements, as determined by <=> or a given block.

  • #minmax: Returns the minimum-valued and maximum-valued elements, as determined by <=> or a given block.

  • #assoc: Returns the first element that is an array whose first element == a given object.

  • #rassoc: Returns the first element that is an array whose second element == a given object.

  • #at: Returns the element at a given offset.

  • #values_at: Returns the elements at given offsets.

  • #dig: Returns the object in nested objects that is specified by a given index and additional arguments.

  • #drop: Returns trailing elements as determined by a given index.

  • #take: Returns leading elements as determined by a given index.

  • #drop_while: Returns trailing elements as determined by a given block.

  • #take_while: Returns leading elements as determined by a given block.

  • #slice: Returns consecutive elements as determined by a given argument.

  • #sort: Returns all elements in an order determined by <=> or a given block.

  • #reverse: Returns all elements in reverse order.

  • #compact: Returns an array containing all non-nil elements.

  • #select, #filter: Returns an array containing elements selected by a given block.

  • #uniq: Returns an array containing non-duplicate elements.

  • #rotate: Returns all elements with some rotated from one end to the other.

  • #bsearch: Returns an element selected via a binary search as determined by a given block.

  • #bsearch_index: Returns the index of an element selected via a binary search as determined by a given block.

  • #sample: Returns one or more random elements.

  • #shuffle: Returns elements in a random order.

Methods for Assigning

These methods add, replace, or reorder elements in self.

  • #[]=: Assigns specified elements with a given object.

  • #push, #append, #<<: Appends trailing elements.

  • #unshift, #prepend: Prepends leading elements.

  • #insert: Inserts given objects at a given offset; does not replace elements.

  • #concat: Appends all elements from given arrays.

  • #fill: Replaces specified elements with specified objects.

  • #replace: Replaces the content of self with the content of a given array.

  • #reverse!: Replaces self with its elements reversed.

  • #rotate!: Replaces self with its elements rotated.

  • #shuffle!: Replaces self with its elements in random order.

  • #sort!: Replaces self with its elements sorted, as determined by <=> or a given block.

  • #sort_by!: Replaces self with its elements sorted, as determined by a given block.

Methods for Deleting

Each of these methods removes elements from self:

  • #pop: Removes and returns the last element.

  • #shift: Removes and returns the first element.

  • #compact!: Removes all nil elements.

  • #delete: Removes elements equal to a given object.

  • #delete_at: Removes the element at a given offset.

  • #delete_if: Removes elements specified by a given block.

  • #keep_if: Removes elements not specified by a given block.

  • #reject!: Removes elements specified by a given block.

  • #select!, #filter!: Removes elements not specified by a given block.

  • #slice!: Removes and returns a sequence of elements.

  • #uniq!: Removes duplicates.

Methods for Combining

  • #&: Returns an array containing elements found both in self and a given array.

  • #intersection: Returns an array containing elements found both in self and in each given array.

  • #+: Returns an array containing all elements of self followed by all elements of a given array.

  • #-: Returns an array containing all elements of self that are not found in a given array.

  • #|: Returns an array containing all elements of self and all elements of a given array, duplicates removed.

  • #union: Returns an array containing all elements of self and all elements of given arrays, duplicates removed.

  • #difference: Returns an array containing all elements of self that are not found in any of the given arrays..

  • #product: Returns or yields all combinations of elements from self and given arrays.

Methods for Iterating

  • #each: Passes each element to a given block.

  • #reverse_each: Passes each element, in reverse order, to a given block.

  • #each_index: Passes each element index to a given block.

  • #cycle: Calls a given block with each element, then does so again, for a specified number of times, or forever.

  • #combination: Calls a given block with combinations of elements of self; a combination does not use the same element more than once.

  • #permutation: Calls a given block with permutations of elements of self; a permutation does not use the same element more than once.

  • #repeated_combination: Calls a given block with combinations of elements of self; a combination may use the same element more than once.

  • #repeated_permutation: Calls a given block with permutations of elements of self; a permutation may use the same element more than once.

Methods for Converting

  • #map, #collect: Returns an array containing the block return-value for each element.

  • #map!, #collect!: Replaces each element with a block return-value.

  • #flatten: Returns an array that is a recursive flattening of self.

  • #flatten!: Replaces each nested array in self with the elements from that array.

  • #inspect, #to_s: Returns a new String containing the elements.

  • #join: Returns a newsString containing the elements joined by the field separator.

  • #to_a: Returns self or a new array containing all elements.

  • #to_ary: Returns self.

  • #to_h: Returns a new hash formed from the elements.

  • #transpose: Transposes self, which must be an array of arrays.

  • #zip: Returns a new array of arrays containing self and given arrays; follow the link for details.

Other Methods

  • #*: Returns one of the following:

    • With integer argument n, a new array that is the concatenation of n copies of self.

    • With string argument field_separator, a new string that is equivalent to join(field_separator).

  • #abbrev: Returns a hash of unambiguous abbreviations for elements.

  • #pack: Packs the elements into a binary sequence.

  • #sum: Returns a sum of elements according to either + or a given block.

Class Method Summary collapse

Instance Method Summary collapse

Methods included from Enumerable

#chain, #chunk, #chunk_while, #collect_concat, #detect, #each_cons, #each_entry, #each_slice, #each_with_index, #each_with_object, #entries, #filter_map, #find, #find_all, #first, #flat_map, #grep, #grep_v, #group_by, #inject, #lazy, #max_by, #member?, #min_by, #minmax_by, #partition, #reduce, #slice_after, #slice_before, #slice_when, #sort_by, #tally

Constructor Details

#newObject #new(array) ⇒ Object #new(size) ⇒ Object #new(size, default_value) ⇒ Object #new(size) {|index| ... } ⇒ Object

Returns a new Array.

With no block and no arguments, returns a new empty Array object.

With no block and a single Array argument array, returns a new Array formed from array:

a = Array.new([:foo, 'bar', 2])
a.class # => Array
a # => [:foo, "bar", 2]

With no block and a single Integer argument size, returns a new Array of the given size whose elements are all nil:

a = Array.new(3)
a # => [nil, nil, nil]

With no block and arguments size and default_value, returns an Array of the given size; each element is that same default_value:

a = Array.new(3, 'x')
a # => ['x', 'x', 'x']

With a block and argument size, returns an Array of the given size; the block is called with each successive integer index; the element for that index is the return value from the block:

a = Array.new(3) {|index| "Element #{index}" }
a # => ["Element 0", "Element 1", "Element 2"]

Raises ArgumentError if size is negative.

With a block and no argument, or a single argument 0, ignores the block and returns a new empty Array.

Overloads:



1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
# File 'array.c', line 1084

static VALUE
rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
{
    long len;
    VALUE size, val;

    rb_ary_modify(ary);
    if (argc == 0) {
        rb_ary_reset(ary);
        assert(ARY_EMBED_P(ary));
        assert(ARY_EMBED_LEN(ary) == 0);
        if (rb_block_given_p()) {
            rb_warning("given block not used");
        }
        return ary;
    }
    rb_scan_args(argc, argv, "02", &size, &val);
    if (argc == 1 && !FIXNUM_P(size)) {
        val = rb_check_array_type(size);
        if (!NIL_P(val)) {
            rb_ary_replace(ary, val);
            return ary;
        }
    }

    len = NUM2LONG(size);
    /* NUM2LONG() may call size.to_int, ary can be frozen, modified, etc */
    if (len < 0) {
        rb_raise(rb_eArgError, "negative array size");
    }
    if (len > ARY_MAX_SIZE) {
        rb_raise(rb_eArgError, "array size too big");
    }
    /* recheck after argument conversion */
    rb_ary_modify(ary);
    ary_resize_capa(ary, len);
    if (rb_block_given_p()) {
        long i;

        if (argc == 2) {
            rb_warn("block supersedes default value argument");
        }
        for (i=0; i<len; i++) {
            rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
            ARY_SET_LEN(ary, i + 1);
        }
    }
    else {
        ary_memfill(ary, 0, len, val);
        ARY_SET_LEN(ary, len);
    }
    return ary;
}

Class Method Details

.[](*args) ⇒ Object

Returns a new array populated with the given objects.

Array.[]( 1, 'a', /^A/)  # => [1, "a", /^A/]
Array[ 1, 'a', /^A/ ]    # => [1, "a", /^A/]
[ 1, 'a', /^A/ ]         # => [1, "a", /^A/]


1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
# File 'array.c', line 1146

static VALUE
rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
{
    VALUE ary = ary_new(klass, argc);
    if (argc > 0 && argv) {
        ary_memcpy(ary, 0, argc, argv);
        ARY_SET_LEN(ary, argc);
    }

    return ary;
}

.new(*args) ⇒ Object

:nodoc:



1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
# File 'array.c', line 1013

static VALUE
rb_ary_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE ary;

    if (klass == rb_cArray) {
        long size = 0;
        if (argc > 0 && FIXNUM_P(argv[0])) {
            size = FIX2LONG(argv[0]);
            if (size < 0) size = 0;
        }

        ary = ary_new(klass, size);

        rb_obj_call_init_kw(ary, argc, argv, RB_PASS_CALLED_KEYWORDS);
    }
    else {
        ary = rb_class_new_instance_pass_kw(argc, argv, klass);
    }

    return ary;
}

.try_convert(object) ⇒ Object?

If object is an Array object, returns object.

Otherwise if object responds to :to_ary, calls object.to_ary and returns the result.

Returns nil if object does not respond to :to_ary

Raises an exception unless object.to_ary returns an Array object.

Returns:



1006
1007
1008
1009
1010
# File 'array.c', line 1006

static VALUE
rb_ary_s_try_convert(VALUE dummy, VALUE ary)
{
    return rb_check_array_type(ary);
}

Instance Method Details

#&(other_array) ⇒ Object

Returns a new Array containing each element found in both array and Array other_array; duplicates are omitted; items are compared using eql? (items must also implement hash correctly):

[0, 1, 2, 3] & [1, 2] # => [1, 2]
[0, 1, 0, 1] & [0, 1] # => [0, 1]

Preserves order from array:

[0, 1, 2] & [3, 2, 1, 0] # => [0, 1, 2]

Related: Array#intersection.



5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
# File 'array.c', line 5485

static VALUE
rb_ary_and(VALUE ary1, VALUE ary2)
{
    VALUE hash, ary3, v;
    st_data_t vv;
    long i;

    ary2 = to_ary(ary2);
    ary3 = rb_ary_new();
    if (RARRAY_LEN(ary1) == 0 || RARRAY_LEN(ary2) == 0) return ary3;

    if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN && RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
        for (i=0; i<RARRAY_LEN(ary1); i++) {
            v = RARRAY_AREF(ary1, i);
            if (!rb_ary_includes_by_eql(ary2, v)) continue;
            if (rb_ary_includes_by_eql(ary3, v)) continue;
            rb_ary_push(ary3, v);
        }
        return ary3;
    }

    hash = ary_make_hash(ary2);

    for (i=0; i<RARRAY_LEN(ary1); i++) {
        v = RARRAY_AREF(ary1, i);
        vv = (st_data_t)v;
        if (rb_hash_stlike_delete(hash, &vv, 0)) {
            rb_ary_push(ary3, v);
        }
    }

    return ary3;
}

#*(n) ⇒ Object #*(string_separator) ⇒ Object

When non-negative argument Integer n is given, returns a new Array built by concatenating the n copies of self:

a = ['x', 'y']
a * 3 # => ["x", "y", "x", "y", "x", "y"]

When String argument string_separator is given, equivalent to array.join(string_separator):

[0, [0, 1], {foo: 0}] * ', ' # => "0, 0, 1, {:foo=>0}"


4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
# File 'array.c', line 4962

static VALUE
rb_ary_times(VALUE ary, VALUE times)
{
    VALUE ary2, tmp;
    const VALUE *ptr;
    long t, len;

    tmp = rb_check_string_type(times);
    if (!NIL_P(tmp)) {
        return rb_ary_join(ary, tmp);
    }

    len = NUM2LONG(times);
    if (len == 0) {
        ary2 = ary_new(rb_cArray, 0);
        goto out;
    }
    if (len < 0) {
        rb_raise(rb_eArgError, "negative argument");
    }
    if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
        rb_raise(rb_eArgError, "argument too big");
    }
    len *= RARRAY_LEN(ary);

    ary2 = ary_new(rb_cArray, len);
    ARY_SET_LEN(ary2, len);

    ptr = RARRAY_CONST_PTR(ary);
    t = RARRAY_LEN(ary);
    if (0 < t) {
        ary_memcpy(ary2, 0, t, ptr);
        while (t <= len/2) {
            ary_memcpy(ary2, t, t, RARRAY_CONST_PTR(ary2));
            t *= 2;
        }
        if (t < len) {
            ary_memcpy(ary2, t, len-t, RARRAY_CONST_PTR(ary2));
        }
    }
  out:
    return ary2;
}

#+(other_array) ⇒ Object

Returns a new Array containing all elements of array followed by all elements of other_array:

a = [0, 1] + [2, 3]
a # => [0, 1, 2, 3]

Related: #concat.



4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
# File 'array.c', line 4878

VALUE
rb_ary_plus(VALUE x, VALUE y)
{
    VALUE z;
    long len, xlen, ylen;

    y = to_ary(y);
    xlen = RARRAY_LEN(x);
    ylen = RARRAY_LEN(y);
    len = xlen + ylen;
    z = rb_ary_new2(len);

    ary_memcpy(z, 0, xlen, RARRAY_CONST_PTR(x));
    ary_memcpy(z, xlen, ylen, RARRAY_CONST_PTR(y));
    ARY_SET_LEN(z, len);
    return z;
}

#-(other_array) ⇒ Object

Returns a new Array containing only those elements from array that are not found in Array other_array; items are compared using eql?; the order from array is preserved:

[0, 1, 1, 2, 1, 1, 3, 1, 1] - [1] # => [0, 2, 3]
[0, 1, 2, 3] - [3, 0] # => [1, 2]
[0, 1, 2] - [4] # => [0, 1, 2]

Related: Array#difference.



5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
# File 'array.c', line 5383

VALUE
rb_ary_diff(VALUE ary1, VALUE ary2)
{
    VALUE ary3;
    VALUE hash;
    long i;

    ary2 = to_ary(ary2);
    if (RARRAY_LEN(ary2) == 0) { return ary_make_shared_copy(ary1); }
    ary3 = rb_ary_new();

    if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN || RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
        for (i=0; i<RARRAY_LEN(ary1); i++) {
            VALUE elt = rb_ary_elt(ary1, i);
            if (rb_ary_includes_by_eql(ary2, elt)) continue;
            rb_ary_push(ary3, elt);
        }
        return ary3;
    }

    hash = ary_make_hash(ary2);
    for (i=0; i<RARRAY_LEN(ary1); i++) {
        if (rb_hash_stlike_lookup(hash, RARRAY_AREF(ary1, i), NULL)) continue;
        rb_ary_push(ary3, rb_ary_elt(ary1, i));
    }

    return ary3;
}

#<<(object) ⇒ self

Appends object to self; returns self:

a = [:foo, 'bar', 2]
a << :baz # => [:foo, "bar", 2, :baz]

Appends object as one element, even if it is another Array:

a = [:foo, 'bar', 2]
a1 = a << [3, 4]
a1 # => [:foo, "bar", 2, [3, 4]]

Returns:

  • (self)


1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
# File 'array.c', line 1337

VALUE
rb_ary_push(VALUE ary, VALUE item)
{
    long idx = RARRAY_LEN((ary_verify(ary), ary));
    VALUE target_ary = ary_ensure_room_for_push(ary, 1);
    RARRAY_PTR_USE(ary, ptr, {
        RB_OBJ_WRITE(target_ary, &ptr[idx], item);
    });
    ARY_SET_LEN(ary, idx + 1);
    ary_verify(ary);
    return ary;
}

#<=>(other_array) ⇒ -1, ...

Returns -1, 0, or 1 as self is less than, equal to, or greater than other_array. For each index i in self, evaluates result = self[i] <=> other_array[i].

Returns -1 if any result is -1:

[0, 1, 2] <=> [0, 1, 3] # => -1

Returns 1 if any result is 1:

[0, 1, 2] <=> [0, 1, 1] # => 1

When all results are zero:

  • Returns -1 if array is smaller than other_array:

    [0, 1, 2] <=> [0, 1, 2, 3] # => -1
    
  • Returns 1 if array is larger than other_array:

    [0, 1, 2] <=> [0, 1] # => 1
    
  • Returns 0 if array and other_array are the same size:

    [0, 1, 2] <=> [0, 1, 2] # => 0
    

Returns:

  • (-1, 0, 1)


5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
# File 'array.c', line 5302

VALUE
rb_ary_cmp(VALUE ary1, VALUE ary2)
{
    long len;
    VALUE v;

    ary2 = rb_check_array_type(ary2);
    if (NIL_P(ary2)) return Qnil;
    if (ary1 == ary2) return INT2FIX(0);
    v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
    if (!UNDEF_P(v)) return v;
    len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
    if (len == 0) return INT2FIX(0);
    if (len > 0) return INT2FIX(1);
    return INT2FIX(-1);
}

#==(other_array) ⇒ Boolean

Returns true if both array.size == other_array.size and for each index i in array, array[i] == other_array[i]:

a0 = [:foo, 'bar', 2]
a1 = [:foo, 'bar', 2.0]
a1 == a0 # => true
[] == [] # => true

Otherwise, returns false.

This method is different from method Array#eql?, which compares elements using Object#eql?.

Returns:

  • (Boolean)


5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
# File 'array.c', line 5119

static VALUE
rb_ary_equal(VALUE ary1, VALUE ary2)
{
    if (ary1 == ary2) return Qtrue;
    if (!RB_TYPE_P(ary2, T_ARRAY)) {
        if (!rb_respond_to(ary2, idTo_ary)) {
            return Qfalse;
        }
        return rb_equal(ary2, ary1);
    }
    if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
    if (RARRAY_CONST_PTR(ary1) == RARRAY_CONST_PTR(ary2)) return Qtrue;
    return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
}

#[](index) ⇒ Object? #[](start, length) ⇒ Object? #[](range) ⇒ Object? #[](aseq) ⇒ Object? #slice(index) ⇒ Object? #slice(start, length) ⇒ Object? #slice(range) ⇒ Object? #slice(aseq) ⇒ Object?

Returns elements from self; does not modify self.

When a single Integer argument index is given, returns the element at offset index:

a = [:foo, 'bar', 2]
a[0] # => :foo
a[2] # => 2
a # => [:foo, "bar", 2]

If index is negative, counts relative to the end of self:

a = [:foo, 'bar', 2]
a[-1] # => 2
a[-2] # => "bar"

If index is out of range, returns nil.

When two Integer arguments start and length are given, returns a new Array of size length containing successive elements beginning at offset start:

a = [:foo, 'bar', 2]
a[0, 2] # => [:foo, "bar"]
a[1, 2] # => ["bar", 2]

If start + length is greater than self.length, returns all elements from offset start to the end:

a = [:foo, 'bar', 2]
a[0, 4] # => [:foo, "bar", 2]
a[1, 3] # => ["bar", 2]
a[2, 2] # => [2]

If start == self.size and length >= 0, returns a new empty Array.

If length is negative, returns nil.

When a single Range argument range is given, treats range.min as start above and range.size as length above:

a = [:foo, 'bar', 2]
a[0..1] # => [:foo, "bar"]
a[1..2] # => ["bar", 2]

Special case: If range.start == a.size, returns a new empty Array.

If range.end is negative, calculates the end index from the end:

a = [:foo, 'bar', 2]
a[0..-1] # => [:foo, "bar", 2]
a[0..-2] # => [:foo, "bar"]
a[0..-3] # => [:foo]

If range.start is negative, calculates the start index from the end:

a = [:foo, 'bar', 2]
a[-1..2] # => [2]
a[-2..2] # => ["bar", 2]
a[-3..2] # => [:foo, "bar", 2]

If range.start is larger than the array size, returns nil.

a = [:foo, 'bar', 2]
a[4..1] # => nil
a[4..0] # => nil
a[4..-1] # => nil

When a single Enumerator::ArithmeticSequence argument aseq is given, returns an Array of elements corresponding to the indexes produced by the sequence.

a = ['--', 'data1', '--', 'data2', '--', 'data3']
a[(1..).step(2)] # => ["data1", "data2", "data3"]

Unlike slicing with range, if the start or the end of the arithmetic sequence is larger than array size, throws RangeError.

a = ['--', 'data1', '--', 'data2', '--', 'data3']
a[(1..11).step(2)]
# RangeError (((1..11).step(2)) out of range)
a[(7..).step(2)]
# RangeError (((7..).step(2)) out of range)

If given a single argument, and its type is not one of the listed, tries to convert it to Integer, and raises if it is impossible:

a = [:foo, 'bar', 2]
# Raises TypeError (no implicit conversion of Symbol into Integer):
a[:foo]

Overloads:



1826
1827
1828
1829
1830
1831
1832
1833
1834
# File 'array.c', line 1826

VALUE
rb_ary_aref(int argc, const VALUE *argv, VALUE ary)
{
    rb_check_arity(argc, 1, 2);
    if (argc == 2) {
        return rb_ary_aref2(ary, argv[0], argv[1]);
    }
    return rb_ary_aref1(ary, argv[0]);
}

#[]=(index) ⇒ Object #[]=(start, length) ⇒ Object #[]=(range) ⇒ Object

Assigns elements in self; returns the given object.

When Integer argument index is given, assigns object to an element in self.

If index is non-negative, assigns object the element at offset index:

a = [:foo, 'bar', 2]
a[0] = 'foo' # => "foo"
a # => ["foo", "bar", 2]

If index is greater than self.length, extends the array:

a = [:foo, 'bar', 2]
a[7] = 'foo' # => "foo"
a # => [:foo, "bar", 2, nil, nil, nil, nil, "foo"]

If index is negative, counts backwards from the end of the array:

a = [:foo, 'bar', 2]
a[-1] = 'two' # => "two"
a # => [:foo, "bar", "two"]

When Integer arguments start and length are given and object is not an Array, removes length - 1 elements beginning at offset start, and assigns object at offset start:

a = [:foo, 'bar', 2]
a[0, 2] = 'foo' # => "foo"
a # => ["foo", 2]

If start is negative, counts backwards from the end of the array:

a = [:foo, 'bar', 2]
a[-2, 2] = 'foo' # => "foo"
a # => [:foo, "foo"]

If start is non-negative and outside the array ( >= self.size), extends the array with nil, assigns object at offset start, and ignores length:

a = [:foo, 'bar', 2]
a[6, 50] = 'foo' # => "foo"
a # => [:foo, "bar", 2, nil, nil, nil, "foo"]

If length is zero, shifts elements at and following offset start and assigns object at offset start:

a = [:foo, 'bar', 2]
a[1, 0] = 'foo' # => "foo"
a # => [:foo, "foo", "bar", 2]

If length is too large for the existing array, does not extend the array:

a = [:foo, 'bar', 2]
a[1, 5] = 'foo' # => "foo"
a # => [:foo, "foo"]

When Range argument range is given and object is an Array, removes length - 1 elements beginning at offset start, and assigns object at offset start:

a = [:foo, 'bar', 2]
a[0..1] = 'foo' # => "foo"
a # => ["foo", 2]

if range.begin is negative, counts backwards from the end of the array:

a = [:foo, 'bar', 2]
a[-2..2] = 'foo' # => "foo"
a # => [:foo, "foo"]

If the array length is less than range.begin, assigns object at offset range.begin, and ignores length:

a = [:foo, 'bar', 2]
a[6..50] = 'foo' # => "foo"
a # => [:foo, "bar", 2, nil, nil, nil, "foo"]

If range.end is zero, shifts elements at and following offset start and assigns object at offset start:

a = [:foo, 'bar', 2]
a[1..0] = 'foo' # => "foo"
a # => [:foo, "foo", "bar", 2]

If range.end is negative, assigns object at offset start, retains range.end.abs -1 elements past that, and removes those beyond:

a = [:foo, 'bar', 2]
a[1..-1] = 'foo' # => "foo"
a # => [:foo, "foo"]
a = [:foo, 'bar', 2]
a[1..-2] = 'foo' # => "foo"
a # => [:foo, "foo", 2]
a = [:foo, 'bar', 2]
a[1..-3] = 'foo' # => "foo"
a # => [:foo, "foo", "bar", 2]
a = [:foo, 'bar', 2]

If range.end is too large for the existing array, replaces array elements, but does not extend the array with nil values:

a = [:foo, 'bar', 2]
a[1..5] = 'foo' # => "foo"
a # => [:foo, "foo"]

Overloads:



2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
# File 'array.c', line 2392

static VALUE
rb_ary_aset(int argc, VALUE *argv, VALUE ary)
{
    long offset, beg, len;

    rb_check_arity(argc, 2, 3);
    rb_ary_modify_check(ary);
    if (argc == 3) {
        beg = NUM2LONG(argv[0]);
        len = NUM2LONG(argv[1]);
        return ary_aset_by_rb_ary_splice(ary, beg, len, argv[2]);
    }
    if (FIXNUM_P(argv[0])) {
        offset = FIX2LONG(argv[0]);
        return ary_aset_by_rb_ary_store(ary, offset, argv[1]);
    }
    if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
        /* check if idx is Range */
        return ary_aset_by_rb_ary_splice(ary, beg, len, argv[1]);
    }

    offset = NUM2LONG(argv[0]);
    return ary_aset_by_rb_ary_store(ary, offset, argv[1]);
}

#all?Boolean #all? {|element| ... } ⇒ Boolean #all?(obj) ⇒ Boolean

Returns true if all elements of self meet a given criterion.

If self has no element, returns true and argument or block are not used.

With no block given and no argument, returns true if self contains only truthy elements, false otherwise:

[0, 1, :foo].all? # => true
[0, nil, 2].all? # => false
[].all? # => true

With a block given and no argument, calls the block with each element in self; returns true if the block returns only truthy values, false otherwise:

[0, 1, 2].all? { |element| element < 3 } # => true
[0, 1, 2].all? { |element| element < 2 } # => false

If argument obj is given, returns true if obj.=== every element, false otherwise:

['food', 'fool', 'foot'].all?(/foo/) # => true
['food', 'drink'].all?(/bar/) # => false
[].all?(/foo/) # => true
[0, 0, 0].all?(0) # => true
[0, 1, 2].all?(1) # => false

Related: Enumerable#all?

Overloads:

  • #all?Boolean

    Returns:

    • (Boolean)
  • #all? {|element| ... } ⇒ Boolean

    Yields:

    • (element)

    Returns:

    • (Boolean)
  • #all?(obj) ⇒ Boolean

    Returns:

    • (Boolean)


7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
# File 'array.c', line 7739

static VALUE
rb_ary_all_p(int argc, VALUE *argv, VALUE ary)
{
    long i, len = RARRAY_LEN(ary);

    rb_check_arity(argc, 0, 1);
    if (!len) return Qtrue;
    if (argc) {
        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (!RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qfalse;
        }
    }
    else if (!rb_block_given_p()) {
        for (i = 0; i < len; ++i) {
            if (!RTEST(RARRAY_AREF(ary, i))) return Qfalse;
        }
    }
    else {
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qfalse;
        }
    }
    return Qtrue;
}

#any?Boolean #any? {|element| ... } ⇒ Boolean #any?(obj) ⇒ Boolean

Returns true if any element of self meets a given criterion.

If self has no element, returns false and argument or block are not used.

With no block given and no argument, returns true if self has any truthy element, false otherwise:

[nil, 0, false].any? # => true
[nil, false].any? # => false
[].any? # => false

With a block given and no argument, calls the block with each element in self; returns true if the block returns any truthy value, false otherwise:

[0, 1, 2].any? {|element| element > 1 } # => true
[0, 1, 2].any? {|element| element > 2 } # => false

If argument obj is given, returns true if obj.=== any element, false otherwise:

['food', 'drink'].any?(/foo/) # => true
['food', 'drink'].any?(/bar/) # => false
[].any?(/foo/) # => false
[0, 1, 2].any?(1) # => true
[0, 1, 2].any?(3) # => false

Related: Enumerable#any?

Overloads:

  • #any?Boolean

    Returns:

    • (Boolean)
  • #any? {|element| ... } ⇒ Boolean

    Yields:

    • (element)

    Returns:

    • (Boolean)
  • #any?(obj) ⇒ Boolean

    Returns:

    • (Boolean)


7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
# File 'array.c', line 7676

static VALUE
rb_ary_any_p(int argc, VALUE *argv, VALUE ary)
{
    long i, len = RARRAY_LEN(ary);

    rb_check_arity(argc, 0, 1);
    if (!len) return Qfalse;
    if (argc) {
        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qtrue;
        }
    }
    else if (!rb_block_given_p()) {
        for (i = 0; i < len; ++i) {
            if (RTEST(RARRAY_AREF(ary, i))) return Qtrue;
        }
    }
    else {
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qtrue;
        }
    }
    return Qfalse;
}

#assoc(obj) ⇒ nil

Returns the first element in self that is an Array whose first element == obj:

a = [{foo: 0}, [2, 4], [4, 5, 6], [4, 5]]
a.assoc(4) # => [4, 5, 6]

Returns nil if no such element is found.

Related: #rassoc.

Returns:

  • (nil)


5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
# File 'array.c', line 5021

VALUE
rb_ary_assoc(VALUE ary, VALUE key)
{
    long i;
    VALUE v;

    for (i = 0; i < RARRAY_LEN(ary); ++i) {
        v = rb_check_array_type(RARRAY_AREF(ary, i));
        if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
            rb_equal(RARRAY_AREF(v, 0), key))
            return v;
    }
    return Qnil;
}

#at(index) ⇒ Object

Returns the element at Integer offset index; does not modify self.

a = [:foo, 'bar', 2]
a.at(0) # => :foo
a.at(2) # => 2

Returns:



1880
1881
1882
1883
1884
# File 'array.c', line 1880

VALUE
rb_ary_at(VALUE ary, VALUE pos)
{
    return rb_ary_entry(ary, NUM2LONG(pos));
}

#bsearch {|element| ... } ⇒ Object #bsearchObject

Returns an element from self selected by a binary search.

See Binary Searching.

Overloads:

  • #bsearch {|element| ... } ⇒ Object

    Yields:

    • (element)

    Returns:



3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
# File 'array.c', line 3492

static VALUE
rb_ary_bsearch(VALUE ary)
{
    VALUE index_result = rb_ary_bsearch_index(ary);

    if (FIXNUM_P(index_result)) {
        return rb_ary_entry(ary, FIX2LONG(index_result));
    }
    return index_result;
}

#bsearch_index {|element| ... } ⇒ Integer? #bsearch_indexObject

Searches self as described at method #bsearch, but returns the index of the found element instead of the element itself.

Overloads:

  • #bsearch_index {|element| ... } ⇒ Integer?

    Yields:

    • (element)

    Returns:



3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
# File 'array.c', line 3512

static VALUE
rb_ary_bsearch_index(VALUE ary)
{
    long low = 0, high = RARRAY_LEN(ary), mid;
    int smaller = 0, satisfied = 0;
    VALUE v, val;

    RETURN_ENUMERATOR(ary, 0, 0);
    while (low < high) {
        mid = low + ((high - low) / 2);
        val = rb_ary_entry(ary, mid);
        v = rb_yield(val);
        if (FIXNUM_P(v)) {
            if (v == INT2FIX(0)) return INT2FIX(mid);
            smaller = (SIGNED_VALUE)v < 0; /* Fixnum preserves its sign-bit */
        }
        else if (v == Qtrue) {
            satisfied = 1;
            smaller = 1;
        }
        else if (!RTEST(v)) {
            smaller = 0;
        }
        else if (rb_obj_is_kind_of(v, rb_cNumeric)) {
            const VALUE zero = INT2FIX(0);
            switch (rb_cmpint(rb_funcallv(v, id_cmp, 1, &zero), v, zero)) {
              case 0: return INT2FIX(mid);
              case 1: smaller = 0; break;
              case -1: smaller = 1;
            }
        }
        else {
            rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE
                     " (must be numeric, true, false or nil)",
                     rb_obj_class(v));
        }
        if (smaller) {
            high = mid;
        }
        else {
            low = mid + 1;
        }
    }
    if (!satisfied) return Qnil;
    return INT2FIX(low);
}

#clearself

Removes all elements from self:

a = [:foo, 'bar', 2]
a.clear # => []

Returns:

  • (self)


4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
# File 'array.c', line 4584

VALUE
rb_ary_clear(VALUE ary)
{
    rb_ary_modify_check(ary);
    if (ARY_SHARED_P(ary)) {
        if (!ARY_EMBED_P(ary)) {
            rb_ary_unshare(ary);
            FL_SET_EMBED(ary);
            ARY_SET_EMBED_LEN(ary, 0);
        }
    }
    else {
        ARY_SET_LEN(ary, 0);
        if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
            ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
        }
    }
    ary_verify(ary);
    return ary;
}

#map {|element| ... } ⇒ Object #mapObject

Calls the block, if given, with each element of self; returns a new Array whose elements are the return values from the block:

a = [:foo, 'bar', 2]
a1 = a.map {|element| element.class }
a1 # => [Symbol, String, Integer]

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2]
a1 = a.map
a1 # => #<Enumerator: [:foo, "bar", 2]:map>

Overloads:

  • #map {|element| ... } ⇒ Object

    Yields:

    • (element)


3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
# File 'array.c', line 3624

static VALUE
rb_ary_collect(VALUE ary)
{
    long i;
    VALUE collect;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    collect = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        rb_ary_push(collect, rb_yield(RARRAY_AREF(ary, i)));
    }
    return collect;
}

#map! {|element| ... } ⇒ self #map!Object

Calls the block, if given, with each element; replaces the element with the block’s return value:

a = [:foo, 'bar', 2]
a.map! { |element| element.class } # => [Symbol, String, Integer]

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2]
a1 = a.map!
a1 # => #<Enumerator: [:foo, "bar", 2]:map!>

Overloads:

  • #map! {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)


3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
# File 'array.c', line 3658

static VALUE
rb_ary_collect_bang(VALUE ary)
{
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        rb_ary_store(ary, i, rb_yield(RARRAY_AREF(ary, i)));
    }
    return ary;
}

#combination(n) {|element| ... } ⇒ self #combination(n) ⇒ Object

Calls the block, if given, with combinations of elements of self; returns self. The order of combinations is indeterminate.

When a block and an in-range positive Integer argument n (0 < n <= self.size) are given, calls the block with all n-tuple combinations of self.

Example:

a = [0, 1, 2]
a.combination(2) {|combination| p combination }

Output:

[0, 1]
[0, 2]
[1, 2]

Another example:

a = [0, 1, 2]
a.combination(3) {|combination| p combination }

Output:

[0, 1, 2]

When n is zero, calls the block once with a new empty Array:

a = [0, 1, 2]
a1 = a.combination(0) {|combination| p combination }

Output:

[]

When n is out of range (negative or larger than self.size), does not call the block:

a = [0, 1, 2]
a.combination(-1) {|combination| fail 'Cannot happen' }
a.combination(4) {|combination| fail 'Cannot happen' }

Returns a new Enumerator if no block given:

a = [0, 1, 2]
a.combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)>

Overloads:

  • #combination(n) {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)


7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
# File 'array.c', line 7053

static VALUE
rb_ary_combination(VALUE ary, VALUE num)
{
    long i, n, len;

    n = NUM2LONG(num);
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_combination_size);
    len = RARRAY_LEN(ary);
    if (n < 0 || len < n) {
        /* yield nothing */
    }
    else if (n == 0) {
        rb_yield(rb_ary_new2(0));
    }
    else if (n == 1) {
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
        }
    }
    else {
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        volatile VALUE t0;
        long *stack = ALLOCV_N(long, t0, n+1);

        RBASIC_CLEAR_CLASS(ary0);
        combinate0(len, n, stack, ary0);
        ALLOCV_END(t0);
        RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

#compactObject

Returns a new Array containing all non-nil elements from self:

a = [nil, 0, nil, 1, nil, 2, nil]
a.compact # => [0, 1, 2]


6239
6240
6241
6242
6243
6244
6245
# File 'array.c', line 6239

static VALUE
rb_ary_compact(VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_compact_bang(ary);
    return ary;
}

#compact!self?

Removes all nil elements from self.

Returns self if any elements removed, otherwise nil.

Returns:

  • (self, nil)


6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
# File 'array.c', line 6206

static VALUE
rb_ary_compact_bang(VALUE ary)
{
    VALUE *p, *t, *end;
    long n;

    rb_ary_modify(ary);
    p = t = (VALUE *)RARRAY_CONST_PTR(ary); /* WB: no new reference */
    end = p + RARRAY_LEN(ary);

    while (t < end) {
        if (NIL_P(*t)) t++;
        else *p++ = *t++;
    }
    n = p - RARRAY_CONST_PTR(ary);
    if (RARRAY_LEN(ary) == n) {
        return Qnil;
    }
    ary_resize_smaller(ary, n);

    return ary;
}

#concat(*other_arrays) ⇒ self

Adds to array all elements from each Array in other_arrays; returns self:

a = [0, 1]
a.concat([2, 3], [4, 5]) # => [0, 1, 2, 3, 4, 5]

Returns:

  • (self)


4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
# File 'array.c', line 4917

static VALUE
rb_ary_concat_multi(int argc, VALUE *argv, VALUE ary)
{
    rb_ary_modify_check(ary);

    if (argc == 1) {
        rb_ary_concat(ary, argv[0]);
    }
    else if (argc > 1) {
        int i;
        VALUE args = rb_ary_hidden_new(argc);
        for (i = 0; i < argc; i++) {
            rb_ary_concat(args, argv[i]);
        }
        ary_append(ary, args);
    }

    ary_verify(ary);
    return ary;
}

#countInteger #count(obj) ⇒ Integer #count {|element| ... } ⇒ Integer

Returns a count of specified elements.

With no argument and no block, returns the count of all elements:

[0, 1, 2].count # => 3
[].count # => 0

With argument obj, returns the count of elements == to obj:

[0, 1, 2, 0.0].count(0) # => 2
[0, 1, 2].count(3) # => 0

With no argument and a block given, calls the block with each element; returns the count of elements for which the block returns a truthy value:

[0, 1, 2, 3].count {|element| element > 1} # => 2

With argument obj and a block given, issues a warning, ignores the block, and returns the count of elements == to obj.

Overloads:



6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
# File 'array.c', line 6274

static VALUE
rb_ary_count(int argc, VALUE *argv, VALUE ary)
{
    long i, n = 0;

    if (rb_check_arity(argc, 0, 1) == 0) {
        VALUE v;

        if (!rb_block_given_p())
            return LONG2NUM(RARRAY_LEN(ary));

        for (i = 0; i < RARRAY_LEN(ary); i++) {
            v = RARRAY_AREF(ary, i);
            if (RTEST(rb_yield(v))) n++;
        }
    }
    else {
        VALUE obj = argv[0];

        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            if (rb_equal(RARRAY_AREF(ary, i), obj)) n++;
        }
    }

    return LONG2NUM(n);
}

#cycle {|element| ... } ⇒ nil #cycle(count) {|element| ... } ⇒ nil #cycleObject #cycle(count) ⇒ Object

When called with positive Integer argument count and a block, calls the block with each element, then does so again, until it has done so count times; returns nil:

output = []
[0, 1].cycle(2) {|element| output.push(element) } # => nil
output # => [0, 1, 0, 1]

If count is zero or negative, does not call the block:

[0, 1].cycle(0) {|element| fail 'Cannot happen' } # => nil
[0, 1].cycle(-1) {|element| fail 'Cannot happen' } # => nil

When a block is given, and argument is omitted or nil, cycles forever:

# Prints 0 and 1 forever.
[0, 1].cycle {|element| puts element }
[0, 1].cycle(nil) {|element| puts element }

When no block is given, returns a new Enumerator:

[0, 1].cycle(2) # => #<Enumerator: [0, 1]:cycle(2)>
[0, 1].cycle # => # => #<Enumerator: [0, 1]:cycle>
[0, 1].cycle.first(5) # => [0, 1, 0, 1, 0]

Overloads:

  • #cycle {|element| ... } ⇒ nil

    Yields:

    • (element)

    Returns:

    • (nil)
  • #cycle(count) {|element| ... } ⇒ nil

    Yields:

    • (element)

    Returns:

    • (nil)


6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
# File 'array.c', line 6711

static VALUE
rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
{
    long n, i;

    rb_check_arity(argc, 0, 1);

    RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_cycle_size);
    if (argc == 0 || NIL_P(argv[0])) {
        n = -1;
    }
    else {
        n = NUM2LONG(argv[0]);
        if (n <= 0) return Qnil;
    }

    while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
        for (i=0; i<RARRAY_LEN(ary); i++) {
            rb_yield(RARRAY_AREF(ary, i));
        }
    }
    return Qnil;
}

#deconstructObject

:nodoc:



8102
8103
8104
8105
8106
# File 'array.c', line 8102

static VALUE
rb_ary_deconstruct(VALUE ary)
{
    return ary;
}

#delete(obj) ⇒ Object #delete(obj) {|nosuch| ... } ⇒ Object

Removes zero or more elements from self.

When no block is given, removes from self each element ele such that ele == obj; returns the last deleted element:

s1 = 'bar'; s2 = 'bar'
a = [:foo, s1, 2, s2]
a.delete('bar') # => "bar"
a # => [:foo, 2]

Returns nil if no elements removed.

When a block is given, removes from self each element ele such that ele == obj.

If any such elements are found, ignores the block and returns the last deleted element:

s1 = 'bar'; s2 = 'bar'
a = [:foo, s1, 2, s2]
deleted_obj = a.delete('bar') {|obj| fail 'Cannot happen' }
a # => [:foo, 2]

If no such elements are found, returns the block’s return value:

a = [:foo, 'bar', 2]
a.delete(:nosuch) {|obj| "#{obj} not found" } # => "nosuch not found"

Overloads:

  • #delete(obj) {|nosuch| ... } ⇒ Object

    Yields:

    • (nosuch)


3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
# File 'array.c', line 3972

VALUE
rb_ary_delete(VALUE ary, VALUE item)
{
    VALUE v = item;
    long i1, i2;

    for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
        VALUE e = RARRAY_AREF(ary, i1);

        if (rb_equal(e, item)) {
            v = e;
            continue;
        }
        if (i1 != i2) {
            rb_ary_store(ary, i2, e);
        }
        i2++;
    }
    if (RARRAY_LEN(ary) == i2) {
        if (rb_block_given_p()) {
            return rb_yield(item);
        }
        return Qnil;
    }

    ary_resize_smaller(ary, i2);

    ary_verify(ary);
    return v;
}

#delete_at(index) ⇒ nil

Deletes an element from self, per the given Integer index.

When index is non-negative, deletes the element at offset index:

a = [:foo, 'bar', 2]
a.delete_at(1) # => "bar"
a # => [:foo, 2]

If index is too large, returns nil.

When index is negative, counts backward from the end of the array:

a = [:foo, 'bar', 2]
a.delete_at(-2) # => "bar"
a # => [:foo, 2]

If index is too small (far from zero), returns nil.

Returns:

  • (nil)


4071
4072
4073
4074
4075
# File 'array.c', line 4071

static VALUE
rb_ary_delete_at_m(VALUE ary, VALUE pos)
{
    return rb_ary_delete_at(ary, NUM2LONG(pos));
}

#delete_if {|element| ... } ⇒ self #delete_ifEnumerator

Removes each element in self for which the block returns a truthy value; returns self:

a = [:foo, 'bar', 2, 'bat']
a.delete_if {|element| element.to_s.start_with?('b') } # => [:foo, 2]

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2]
a.delete_if # => #<Enumerator: [:foo, "bar", 2]:delete_if>

Overloads:

  • #delete_if {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)
  • #delete_ifEnumerator

    Returns:



4329
4330
4331
4332
4333
4334
4335
4336
# File 'array.c', line 4329

static VALUE
rb_ary_delete_if(VALUE ary)
{
    ary_verify(ary);
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    ary_reject_bang(ary);
    return ary;
}

#difference(*other_arrays) ⇒ Object

Returns a new Array containing only those elements from self that are not found in any of the Arrays other_arrays; items are compared using eql?; order from self is preserved:

[0, 1, 1, 2, 1, 1, 3, 1, 1].difference([1]) # => [0, 2, 3]
[0, 1, 2, 3].difference([3, 0], [1, 3]) # => [2]
[0, 1, 2].difference([4]) # => [0, 1, 2]

Returns a copy of self if no arguments given.

Related: Array#-.



5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
# File 'array.c', line 5429

static VALUE
rb_ary_difference_multi(int argc, VALUE *argv, VALUE ary)
{
    VALUE ary_diff;
    long i, length;
    volatile VALUE t0;
    bool *is_hash = ALLOCV_N(bool, t0, argc);
    ary_diff = rb_ary_new();
    length = RARRAY_LEN(ary);

    for (i = 0; i < argc; i++) {
        argv[i] = to_ary(argv[i]);
        is_hash[i] = (length > SMALL_ARRAY_LEN && RARRAY_LEN(argv[i]) > SMALL_ARRAY_LEN);
        if (is_hash[i]) argv[i] = ary_make_hash(argv[i]);
    }

    for (i = 0; i < RARRAY_LEN(ary); i++) {
        int j;
        VALUE elt = rb_ary_elt(ary, i);
        for (j = 0; j < argc; j++) {
            if (is_hash[j]) {
                if (rb_hash_stlike_lookup(argv[j], RARRAY_AREF(ary, i), NULL))
                    break;
            }
            else {
                if (rb_ary_includes_by_eql(argv[j], elt)) break;
            }
        }
        if (j == argc) rb_ary_push(ary_diff, elt);
    }

    ALLOCV_END(t0);

    return ary_diff;
}

#dig(index, *identifiers) ⇒ Object

Finds and returns the object in nested objects that is specified by index and identifiers. The nested objects may be instances of various classes. See Dig Methods.

Examples:

a = [:foo, [:bar, :baz, [:bat, :bam]]]
a.dig(1) # => [:bar, :baz, [:bat, :bam]]
a.dig(1, 2) # => [:bat, :bam]
a.dig(1, 2, 0) # => :bat
a.dig(1, 2, 3) # => nil

Returns:



7920
7921
7922
7923
7924
7925
7926
7927
7928
# File 'array.c', line 7920

static VALUE
rb_ary_dig(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    self = rb_ary_at(self, *argv);
    if (!--argc) return self;
    ++argv;
    return rb_obj_dig(argc, argv, self, Qnil);
}

#drop(n) ⇒ Object

Returns a new Array containing all but the first n element of self, where n is a non-negative Integer; does not modify self.

Examples:

a = [0, 1, 2, 3, 4, 5]
a.drop(0) # => [0, 1, 2, 3, 4, 5]
a.drop(1) # => [1, 2, 3, 4, 5]
a.drop(2) # => [2, 3, 4, 5]


7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
# File 'array.c', line 7593

static VALUE
rb_ary_drop(VALUE ary, VALUE n)
{
    VALUE result;
    long pos = NUM2LONG(n);
    if (pos < 0) {
        rb_raise(rb_eArgError, "attempt to drop negative size");
    }

    result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
    if (NIL_P(result)) result = rb_ary_new();
    return result;
}

#drop_while {|element| ... } ⇒ Object #drop_whileObject

Returns a new Array containing zero or more trailing elements of self; does not modify self.

With a block given, calls the block with each successive element of self; stops if the block returns false or nil; returns a new Array omitting those elements for which the block returned a truthy value:

a = [0, 1, 2, 3, 4, 5]
a.drop_while {|element| element < 3 } # => [3, 4, 5]

With no block given, returns a new Enumerator:

[0, 1].drop_while # => # => #<Enumerator: [0, 1]:drop_while>

Overloads:

  • #drop_while {|element| ... } ⇒ Object

    Yields:

    • (element)


7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
# File 'array.c', line 7628

static VALUE
rb_ary_drop_while(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
    }
    return rb_ary_drop(ary, LONG2FIX(i));
}

#each {|element| ... } ⇒ self #eachEnumerator

Iterates over array elements.

When a block given, passes each successive array element to the block; returns self:

a = [:foo, 'bar', 2]
a.each {|element|  puts "#{element.class} #{element}" }

Output:

Symbol foo
String bar
Integer 2

Allows the array to be modified during iteration:

a = [:foo, 'bar', 2]
a.each {|element| puts element; a.clear if element.to_s.start_with?('b') }

Output:

foo
bar

When no block given, returns a new Enumerator:

a = [:foo, 'bar', 2]

e = a.each
e # => #<Enumerator: [:foo, "bar", 2]:each>
a1 = e.each {|element|  puts "#{element.class} #{element}" }

Output:

Symbol foo
String bar
Integer 2

Related: #each_index, #reverse_each.

Overloads:

  • #each {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)
  • #eachEnumerator

    Returns:



2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
# File 'array.c', line 2531

VALUE
rb_ary_each(VALUE ary)
{
    long i;
    ary_verify(ary);
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    for (i=0; i<RARRAY_LEN(ary); i++) {
        rb_yield(RARRAY_AREF(ary, i));
    }
    return ary;
}

#each_index {|index| ... } ⇒ self #each_indexEnumerator

Iterates over array indexes.

When a block given, passes each successive array index to the block; returns self:

a = [:foo, 'bar', 2]
a.each_index {|index|  puts "#{index} #{a[index]}" }

Output:

0 foo
1 bar
2 2

Allows the array to be modified during iteration:

a = [:foo, 'bar', 2]
a.each_index {|index| puts index; a.clear if index > 0 }

Output:

0
1

When no block given, returns a new Enumerator:

a = [:foo, 'bar', 2]
e = a.each_index
e # => #<Enumerator: [:foo, "bar", 2]:each_index>
a1 = e.each {|index|  puts "#{index} #{a[index]}"}

Output:

0 foo
1 bar
2 2

Related: #each, #reverse_each.

Overloads:



2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
# File 'array.c', line 2588

static VALUE
rb_ary_each_index(VALUE ary)
{
    long i;
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);

    for (i=0; i<RARRAY_LEN(ary); i++) {
        rb_yield(LONG2NUM(i));
    }
    return ary;
}

#empty?Boolean

Returns true if the count of elements in self is zero, false otherwise.

Returns:

  • (Boolean)


2685
2686
2687
2688
2689
# File 'array.c', line 2685

static VALUE
rb_ary_empty_p(VALUE ary)
{
    return RBOOL(RARRAY_LEN(ary) == 0);
}

#eql?(other_array) ⇒ Boolean

Returns true if self and other_array are the same size, and if, for each index i in self, self[i].eql? other_array[i]:

a0 = [:foo, 'bar', 2]
a1 = [:foo, 'bar', 2]
a1.eql?(a0) # => true

Otherwise, returns false.

This method is different from method Array#==, which compares using method Object#==.

Returns:

  • (Boolean)


5164
5165
5166
5167
5168
5169
5170
5171
5172
# File 'array.c', line 5164

static VALUE
rb_ary_eql(VALUE ary1, VALUE ary2)
{
    if (ary1 == ary2) return Qtrue;
    if (!RB_TYPE_P(ary2, T_ARRAY)) return Qfalse;
    if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
    if (RARRAY_CONST_PTR(ary1) == RARRAY_CONST_PTR(ary2)) return Qtrue;
    return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
}

#fetch(index) ⇒ Object #fetch(index, default_value) ⇒ Object #fetch(index) {|index| ... } ⇒ Object

Returns the element at offset index.

With the single Integer argument index, returns the element at offset index:

a = [:foo, 'bar', 2]
a.fetch(1) # => "bar"

If index is negative, counts from the end of the array:

a = [:foo, 'bar', 2]
a.fetch(-1) # => 2
a.fetch(-2) # => "bar"

With arguments index and default_value, returns the element at offset index if index is in range, otherwise returns default_value:

a = [:foo, 'bar', 2]
a.fetch(1, nil) # => "bar"

With argument index and a block, returns the element at offset index if index is in range (and the block is not called); otherwise calls the block with index and returns its return value:

a = [:foo, 'bar', 2]
a.fetch(1) {|index| raise 'Cannot happen' } # => "bar"
a.fetch(50) {|index| "Value for #{index}" } # => "Value for 50"

Overloads:

  • #fetch(index) {|index| ... } ⇒ Object

    Yields:



1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
# File 'array.c', line 1961

static VALUE
rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
{
    VALUE pos, ifnone;
    long block_given;
    long idx;

    rb_scan_args(argc, argv, "11", &pos, &ifnone);
    block_given = rb_block_given_p();
    if (block_given && argc == 2) {
        rb_warn("block supersedes default value argument");
    }
    idx = NUM2LONG(pos);

    if (idx < 0) {
        idx +=  RARRAY_LEN(ary);
    }
    if (idx < 0 || RARRAY_LEN(ary) <= idx) {
        if (block_given) return rb_yield(pos);
        if (argc == 1) {
            rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
                        idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
        }
        return ifnone;
    }
    return RARRAY_AREF(ary, idx);
}

#fill(obj) ⇒ self #fill(obj, start) ⇒ self #fill(obj, start, length) ⇒ self #fill(obj, range) ⇒ self #fill {|index| ... } ⇒ self #fill(start) {|index| ... } ⇒ self #fill(start, length) {|index| ... } ⇒ self #fill(range) {|index| ... } ⇒ self

Replaces specified elements in self with specified objects; returns self.

With argument obj and no block given, replaces all elements with that one object:

a = ['a', 'b', 'c', 'd']
a # => ["a", "b", "c", "d"]
a.fill(:X) # => [:X, :X, :X, :X]

With arguments obj and Integer start, and no block given, replaces elements based on the given start.

If start is in range (0 <= start < array.size), replaces all elements from offset start through the end:

a = ['a', 'b', 'c', 'd']
a.fill(:X, 2) # => ["a", "b", :X, :X]

If start is too large (start >= array.size), does nothing:

a = ['a', 'b', 'c', 'd']
a.fill(:X, 4) # => ["a", "b", "c", "d"]
a = ['a', 'b', 'c', 'd']
a.fill(:X, 5) # => ["a", "b", "c", "d"]

If start is negative, counts from the end (starting index is start + array.size):

a = ['a', 'b', 'c', 'd']
a.fill(:X, -2) # => ["a", "b", :X, :X]

If start is too small (less than and far from zero), replaces all elements:

a = ['a', 'b', 'c', 'd']
a.fill(:X, -6) # => [:X, :X, :X, :X]
a = ['a', 'b', 'c', 'd']
a.fill(:X, -50) # => [:X, :X, :X, :X]

With arguments obj, Integer start, and Integer length, and no block given, replaces elements based on the given start and length.

If start is in range, replaces length elements beginning at offset start:

a = ['a', 'b', 'c', 'd']
a.fill(:X, 1, 1) # => ["a", :X, "c", "d"]

If start is negative, counts from the end:

a = ['a', 'b', 'c', 'd']
a.fill(:X, -2, 1) # => ["a", "b", :X, "d"]

If start is large (start >= array.size), extends self with nil:

a = ['a', 'b', 'c', 'd']
a.fill(:X, 5, 0) # => ["a", "b", "c", "d", nil]
a = ['a', 'b', 'c', 'd']
a.fill(:X, 5, 2) # => ["a", "b", "c", "d", nil, :X, :X]

If length is zero or negative, replaces no elements:

a = ['a', 'b', 'c', 'd']
a.fill(:X, 1, 0) # => ["a", "b", "c", "d"]
a.fill(:X, 1, -1) # => ["a", "b", "c", "d"]

With arguments obj and Range range, and no block given, replaces elements based on the given range.

If the range is positive and ascending (0 < range.begin <= range.end), replaces elements from range.begin to range.end:

a = ['a', 'b', 'c', 'd']
a.fill(:X, (1..1)) # => ["a", :X, "c", "d"]

If range.first is negative, replaces no elements:

a = ['a', 'b', 'c', 'd']
a.fill(:X, (-1..1)) # => ["a", "b", "c", "d"]

If range.last is negative, counts from the end:

a = ['a', 'b', 'c', 'd']
a.fill(:X, (0..-2)) # => [:X, :X, :X, "d"]
a = ['a', 'b', 'c', 'd']
a.fill(:X, (1..-2)) # => ["a", :X, :X, "d"]

If range.last and range.last are both negative, both count from the end of the array:

a = ['a', 'b', 'c', 'd']
a.fill(:X, (-1..-1)) # => ["a", "b", "c", :X]
a = ['a', 'b', 'c', 'd']
a.fill(:X, (-2..-2)) # => ["a", "b", :X, "d"]

With no arguments and a block given, calls the block with each index; replaces the corresponding element with the block’s return value:

a = ['a', 'b', 'c', 'd']
a.fill { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"]

With argument start and a block given, calls the block with each index from offset start to the end; replaces the corresponding element with the block’s return value.

If start is in range (0 <= start < array.size), replaces from offset start to the end:

a = ['a', 'b', 'c', 'd']
a.fill(1) { |index| "new_#{index}" } # => ["a", "new_1", "new_2", "new_3"]

If start is too large(start >= array.size), does nothing:

a = ['a', 'b', 'c', 'd']
a.fill(4) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"]
a = ['a', 'b', 'c', 'd']
a.fill(4) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"]

If start is negative, counts from the end:

a = ['a', 'b', 'c', 'd']
a.fill(-2) { |index| "new_#{index}" } # => ["a", "b", "new_2", "new_3"]

If start is too small (start <= -array.size, replaces all elements:

a = ['a', 'b', 'c', 'd']
a.fill(-6) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"]
a = ['a', 'b', 'c', 'd']
a.fill(-50) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"]

With arguments start and length, and a block given, calls the block for each index specified by start length; replaces the corresponding element with the block’s return value.

If start is in range, replaces length elements beginning at offset start:

a = ['a', 'b', 'c', 'd']
a.fill(1, 1) { |index| "new_#{index}" } # => ["a", "new_1", "c", "d"]

If start is negative, counts from the end:

a = ['a', 'b', 'c', 'd']
a.fill(-2, 1) { |index| "new_#{index}" } # => ["a", "b", "new_2", "d"]

If start is large (start >= array.size), extends self with nil:

a = ['a', 'b', 'c', 'd']
a.fill(5, 0) { |index| "new_#{index}" } # => ["a", "b", "c", "d", nil]
a = ['a', 'b', 'c', 'd']
a.fill(5, 2) { |index| "new_#{index}" } # => ["a", "b", "c", "d", nil, "new_5", "new_6"]

If length is zero or less, replaces no elements:

a = ['a', 'b', 'c', 'd']
a.fill(1, 0) { |index| "new_#{index}" } # => ["a", "b", "c", "d"]
a.fill(1, -1) { |index| "new_#{index}" } # => ["a", "b", "c", "d"]

With arguments obj and range, and a block given, calls the block with each index in the given range; replaces the corresponding element with the block’s return value.

If the range is positive and ascending (range 0 < range.begin <= range.end, replaces elements from range.begin to range.end:

a = ['a', 'b', 'c', 'd']
a.fill(1..1) { |index| "new_#{index}" } # => ["a", "new_1", "c", "d"]

If range.first is negative, does nothing:

a = ['a', 'b', 'c', 'd']
a.fill(-1..1) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"]

If range.last is negative, counts from the end:

a = ['a', 'b', 'c', 'd']
a.fill(0..-2) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "d"]
a = ['a', 'b', 'c', 'd']
a.fill(1..-2) { |index| "new_#{index}" } # => ["a", "new_1", "new_2", "d"]

If range.first and range.last are both negative, both count from the end:

a = ['a', 'b', 'c', 'd']
a.fill(-1..-1) { |index| "new_#{index}" } # => ["a", "b", "c", "new_3"]
a = ['a', 'b', 'c', 'd']
a.fill(-2..-2) { |index| "new_#{index}" } # => ["a", "b", "new_2", "d"]

Overloads:

  • #fill(obj) ⇒ self

    Returns:

    • (self)
  • #fill(obj, start) ⇒ self

    Returns:

    • (self)
  • #fill(obj, start, length) ⇒ self

    Returns:

    • (self)
  • #fill(obj, range) ⇒ self

    Returns:

    • (self)
  • #fill {|index| ... } ⇒ self

    Yields:

    Returns:

    • (self)
  • #fill(start) {|index| ... } ⇒ self

    Yields:

    Returns:

    • (self)
  • #fill(start, length) {|index| ... } ⇒ self

    Yields:

    Returns:

    • (self)
  • #fill(range) {|index| ... } ⇒ self

    Yields:

    Returns:

    • (self)


4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
# File 'array.c', line 4801

static VALUE
rb_ary_fill(int argc, VALUE *argv, VALUE ary)
{
    VALUE item = Qundef, arg1, arg2;
    long beg = 0, end = 0, len = 0;

    if (rb_block_given_p()) {
        rb_scan_args(argc, argv, "02", &arg1, &arg2);
        argc += 1;		/* hackish */
    }
    else {
        rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
    }
    switch (argc) {
      case 1:
        beg = 0;
        len = RARRAY_LEN(ary);
        break;
      case 2:
        if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
            break;
        }
        /* fall through */
      case 3:
        beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
        if (beg < 0) {
            beg = RARRAY_LEN(ary) + beg;
            if (beg < 0) beg = 0;
        }
        len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
        break;
    }
    rb_ary_modify(ary);
    if (len < 0) {
        return ary;
    }
    if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
        rb_raise(rb_eArgError, "argument too big");
    }
    end = beg + len;
    if (RARRAY_LEN(ary) < end) {
        if (end >= ARY_CAPA(ary)) {
            ary_resize_capa(ary, end);
        }
        ary_mem_clear(ary, RARRAY_LEN(ary), end - RARRAY_LEN(ary));
        ARY_SET_LEN(ary, end);
    }

    if (UNDEF_P(item)) {
        VALUE v;
        long i;

        for (i=beg; i<end; i++) {
            v = rb_yield(LONG2NUM(i));
            if (i>=RARRAY_LEN(ary)) break;
            ARY_SET(ary, i, v);
        }
    }
    else {
        ary_memfill(ary, beg, len, item);
    }
    return ary;
}

#select {|element| ... } ⇒ Object #selectObject

Calls the block, if given, with each element of self; returns a new Array containing those elements of self for which the block returns a truthy value:

a = [:foo, 'bar', 2, :bam]
a1 = a.select {|element| element.to_s.start_with?('b') }
a1 # => ["bar", :bam]

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2, :bam]
a.select # => #<Enumerator: [:foo, "bar", 2, :bam]:select>

Overloads:

  • #select {|element| ... } ⇒ Object

    Yields:

    • (element)


3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
# File 'array.c', line 3801

static VALUE
rb_ary_select(VALUE ary)
{
    VALUE result;
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    result = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
            rb_ary_push(result, rb_ary_elt(ary, i));
        }
    }
    return result;
}

#select! {|element| ... } ⇒ self? #select!Object

Calls the block, if given with each element of self; removes from self those elements for which the block returns false or nil.

Returns self if any elements were removed:

a = [:foo, 'bar', 2, :bam]
a.select! {|element| element.to_s.start_with?('b') } # => ["bar", :bam]

Returns nil if no elements were removed.

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2, :bam]
a.select! # => #<Enumerator: [:foo, "bar", 2, :bam]:select!>

Overloads:

  • #select! {|element| ... } ⇒ self?

    Yields:

    • (element)

    Returns:

    • (self, nil)


3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
# File 'array.c', line 3884

static VALUE
rb_ary_select_bang(VALUE ary)
{
    struct select_bang_arg args;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);

    args.ary = ary;
    args.len[0] = args.len[1] = 0;
    return rb_ensure(select_bang_i, (VALUE)&args, select_bang_ensure, (VALUE)&args);
}

#index(object) ⇒ Integer? #index {|element| ... } ⇒ Integer? #indexObject

Returns the index of a specified element.

When argument object is given but no block, returns the index of the first element element for which object == element:

a = [:foo, 'bar', 2, 'bar']
a.index('bar') # => 1

Returns nil if no such element found.

When both argument object and a block are given, calls the block with each successive element; returns the index of the first element for which the block returns a truthy value:

a = [:foo, 'bar', 2, 'bar']
a.index {|element| element == 'bar' } # => 1

Returns nil if the block never returns a truthy value.

When neither an argument nor a block is given, returns a new Enumerator:

a = [:foo, 'bar', 2]
e = a.index
e # => #<Enumerator: [:foo, "bar", 2]:index>
e.each {|element| element == 'bar' } # => 1

Related: #rindex.

Overloads:



2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
# File 'array.c', line 2025

static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i;

    if (argc == 0) {
        RETURN_ENUMERATOR(ary, 0, 0);
        for (i=0; i<RARRAY_LEN(ary); i++) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
                return LONG2NUM(i);
            }
        }
        return Qnil;
    }
    rb_check_arity(argc, 0, 1);
    val = argv[0];
    if (rb_block_given_p())
        rb_warn("given block not used");
    for (i=0; i<RARRAY_LEN(ary); i++) {
        VALUE e = RARRAY_AREF(ary, i);
        if (rb_equal(e, val)) {
            return LONG2NUM(i);
        }
    }
    return Qnil;
}

#flattenObject #flatten(level) ⇒ Object

Returns a new Array that is a recursive flattening of self:

  • Each non-Array element is unchanged.

  • Each Array is replaced by its individual elements.

With non-negative Integer argument level, flattens recursively through level levels:

a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten(0) # => [0, [1, [2, 3], 4], 5]
a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten(1) # => [0, 1, [2, 3], 4, 5]
a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten(2) # => [0, 1, 2, 3, 4, 5]
a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten(3) # => [0, 1, 2, 3, 4, 5]

With no argument, a nil argument, or with negative argument level, flattens all levels:

a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten # => [0, 1, 2, 3, 4, 5]
[0, 1, 2].flatten # => [0, 1, 2]
a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten(-1) # => [0, 1, 2, 3, 4, 5]
a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten(-2) # => [0, 1, 2, 3, 4, 5]
[0, 1, 2].flatten(-1) # => [0, 1, 2]


6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
# File 'array.c', line 6475

static VALUE
rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
{
    int level = -1;
    VALUE result;

    if (rb_check_arity(argc, 0, 1) && !NIL_P(argv[0])) {
        level = NUM2INT(argv[0]);
        if (level == 0) return ary_make_shared_copy(ary);
    }

    result = flatten(ary, level);
    if (result == ary) {
        result = ary_make_shared_copy(ary);
    }

    return result;
}

#flatten!self? #flatten!(level) ⇒ self?

Replaces each nested Array in self with the elements from that Array; returns self if any changes, nil otherwise.

With non-negative Integer argument level, flattens recursively through level levels:

a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten!(1) # => [0, 1, [2, 3], 4, 5]
a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten!(2) # => [0, 1, 2, 3, 4, 5]
a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten!(3) # => [0, 1, 2, 3, 4, 5]
[0, 1, 2].flatten!(1) # => nil

With no argument, a nil argument, or with negative argument level, flattens all levels:

a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten! # => [0, 1, 2, 3, 4, 5]
[0, 1, 2].flatten! # => nil
a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten!(-1) # => [0, 1, 2, 3, 4, 5]
a = [ 0, [ 1, [2, 3], 4 ], 5 ]
a.flatten!(-2) # => [0, 1, 2, 3, 4, 5]
[0, 1, 2].flatten!(-1) # => nil

Overloads:

  • #flatten!self?

    Returns:

    • (self, nil)
  • #flatten!(level) ⇒ self?

    Returns:

    • (self, nil)


6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
# File 'array.c', line 6420

static VALUE
rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
{
    int mod = 0, level = -1;
    VALUE result, lv;

    lv = (rb_check_arity(argc, 0, 1) ? argv[0] : Qnil);
    rb_ary_modify_check(ary);
    if (!NIL_P(lv)) level = NUM2INT(lv);
    if (level == 0) return Qnil;

    result = flatten(ary, level);
    if (result == ary) {
        return Qnil;
    }
    if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result);
    rb_ary_replace(ary, result);
    if (mod) ARY_SET_EMBED_LEN(result, 0);

    return ary;
}

#hashInteger

Returns the integer hash value for self.

Two arrays with the same content will have the same hash code (and will compare using eql?):

[0, 1, 2].hash == [0, 1, 2].hash # => true
[0, 1, 2].hash == [0, 1, 3].hash # => false

Returns:



5204
5205
5206
5207
5208
# File 'array.c', line 5204

static VALUE
rb_ary_hash(VALUE ary)
{
    return rb_ary_hash_values(RARRAY_LEN(ary), RARRAY_CONST_PTR(ary));
}

#include?(obj) ⇒ Boolean

Returns true if for some index i in self, obj == self[i]; otherwise false:

[0, 1, 2].include?(2) # => true
[0, 1, 2].include?(3) # => false

Returns:

  • (Boolean)


5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
# File 'array.c', line 5221

VALUE
rb_ary_includes(VALUE ary, VALUE item)
{
    long i;
    VALUE e;

    for (i=0; i<RARRAY_LEN(ary); i++) {
        e = RARRAY_AREF(ary, i);
        if (rb_equal(e, item)) {
            return Qtrue;
        }
    }
    return Qfalse;
}

#index(object) ⇒ Integer? #index {|element| ... } ⇒ Integer? #indexObject

Returns the index of a specified element.

When argument object is given but no block, returns the index of the first element element for which object == element:

a = [:foo, 'bar', 2, 'bar']
a.index('bar') # => 1

Returns nil if no such element found.

When both argument object and a block are given, calls the block with each successive element; returns the index of the first element for which the block returns a truthy value:

a = [:foo, 'bar', 2, 'bar']
a.index {|element| element == 'bar' } # => 1

Returns nil if the block never returns a truthy value.

When neither an argument nor a block is given, returns a new Enumerator:

a = [:foo, 'bar', 2]
e = a.index
e # => #<Enumerator: [:foo, "bar", 2]:index>
e.each {|element| element == 'bar' } # => 1

Related: #rindex.

Overloads:



2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
# File 'array.c', line 2025

static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i;

    if (argc == 0) {
        RETURN_ENUMERATOR(ary, 0, 0);
        for (i=0; i<RARRAY_LEN(ary); i++) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
                return LONG2NUM(i);
            }
        }
        return Qnil;
    }
    rb_check_arity(argc, 0, 1);
    val = argv[0];
    if (rb_block_given_p())
        rb_warn("given block not used");
    for (i=0; i<RARRAY_LEN(ary); i++) {
        VALUE e = RARRAY_AREF(ary, i);
        if (rb_equal(e, val)) {
            return LONG2NUM(i);
        }
    }
    return Qnil;
}

#replace(other_array) ⇒ self

Replaces the content of self with the content of other_array; returns self:

a = [:foo, 'bar', 2]
a.replace(['foo', :bar, 3]) # => ["foo", :bar, 3]

Returns:

  • (self)


4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
# File 'array.c', line 4530

VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
    rb_ary_modify_check(copy);
    orig = to_ary(orig);
    if (copy == orig) return copy;

    rb_ary_reset(copy);

    /* orig has enough space to embed the contents of orig. */
    if (RARRAY_LEN(orig) <= ary_embed_capa(copy)) {
        assert(ARY_EMBED_P(copy));
        ary_memcpy(copy, 0, RARRAY_LEN(orig), RARRAY_CONST_PTR(orig));
        ARY_SET_EMBED_LEN(copy, RARRAY_LEN(orig));
    }
    /* orig is embedded but copy does not have enough space to embed the
     * contents of orig. */
    else if (ARY_EMBED_P(orig)) {
        long len = ARY_EMBED_LEN(orig);
        VALUE *ptr = ary_heap_alloc(len);

        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, ptr);
        ARY_SET_LEN(copy, len);
        ARY_SET_CAPA(copy, len);

        // No allocation and exception expected that could leave `copy` in a
        // bad state from the edits above.
        ary_memcpy(copy, 0, len, RARRAY_CONST_PTR(orig));
    }
    /* Otherwise, orig is on heap and copy does not have enough space to embed
     * the contents of orig. */
    else {
        VALUE shared_root = ary_make_shared(orig);
        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, ARY_HEAP_PTR(orig));
        ARY_SET_LEN(copy, ARY_HEAP_LEN(orig));
        rb_ary_set_shared(copy, shared_root);
    }
    ary_verify(copy);
    return copy;
}

#insert(index, *objects) ⇒ self

Inserts given objects before or after the element at Integer index offset; returns self.

When index is non-negative, inserts all given objects before the element at offset index:

a = [:foo, 'bar', 2]
a.insert(1, :bat, :bam) # => [:foo, :bat, :bam, "bar", 2]

Extends the array if index is beyond the array (index >= self.size):

a = [:foo, 'bar', 2]
a.insert(5, :bat, :bam)
a # => [:foo, "bar", 2, nil, nil, :bat, :bam]

Does nothing if no objects given:

a = [:foo, 'bar', 2]
a.insert(1)
a.insert(50)
a.insert(-50)
a # => [:foo, "bar", 2]

When index is negative, inserts all given objects after the element at offset index+self.size:

a = [:foo, 'bar', 2]
a.insert(-2, :bat, :bam)
a # => [:foo, "bar", :bat, :bam, 2]

Returns:

  • (self)


2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
# File 'array.c', line 2453

static VALUE
rb_ary_insert(int argc, VALUE *argv, VALUE ary)
{
    long pos;

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    rb_ary_modify_check(ary);
    pos = NUM2LONG(argv[0]);
    if (argc == 1) return ary;
    if (pos == -1) {
        pos = RARRAY_LEN(ary);
    }
    else if (pos < 0) {
        long minpos = -RARRAY_LEN(ary) - 1;
        if (pos < minpos) {
            rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
                     pos, minpos);
        }
        pos++;
    }
    rb_ary_splice(ary, pos, 0, argv + 1, argc - 1);
    return ary;
}

#inspectObject Also known as: to_s

Returns the new String formed by calling method #inspect on each array element:

a = [:foo, 'bar', 2]
a.inspect # => "[:foo, \"bar\", 2]"


2917
2918
2919
2920
2921
2922
# File 'array.c', line 2917

static VALUE
rb_ary_inspect(VALUE ary)
{
    if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
    return rb_exec_recursive(inspect_ary, ary, 0);
}

#intersect?(other_ary) ⇒ Boolean

Returns true if the array and other_ary have at least one element in common, otherwise returns false:

a = [ 1, 2, 3 ]
b = [ 3, 4, 5 ]
c = [ 5, 6, 7 ]
a.intersect?(b)   #=> true
a.intersect?(c)   #=> false

Array elements are compared using eql? (items must also implement hash correctly).

Returns:

  • (Boolean)


5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
# File 'array.c', line 5679

static VALUE
rb_ary_intersect_p(VALUE ary1, VALUE ary2)
{
    VALUE hash, v, result, shorter, longer;
    st_data_t vv;
    long i;

    ary2 = to_ary(ary2);
    if (RARRAY_LEN(ary1) == 0 || RARRAY_LEN(ary2) == 0) return Qfalse;

    if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN && RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
        for (i=0; i<RARRAY_LEN(ary1); i++) {
            v = RARRAY_AREF(ary1, i);
            if (rb_ary_includes_by_eql(ary2, v)) return Qtrue;
        }
        return Qfalse;
    }

    shorter = ary1;
    longer = ary2;
    if (RARRAY_LEN(ary1) > RARRAY_LEN(ary2)) {
        longer = ary1;
        shorter = ary2;
    }

    hash = ary_make_hash(shorter);
    result = Qfalse;

    for (i=0; i<RARRAY_LEN(longer); i++) {
        v = RARRAY_AREF(longer, i);
        vv = (st_data_t)v;
        if (rb_hash_stlike_lookup(hash, vv, 0)) {
            result = Qtrue;
            break;
        }
    }

    return result;
}

#intersection(*other_arrays) ⇒ Object

Returns a new Array containing each element found both in self and in all of the given Arrays other_arrays; duplicates are omitted; items are compared using eql? (items must also implement hash correctly):

[0, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1]
[0, 0, 1, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1]

Preserves order from self:

[0, 1, 2].intersection([2, 1, 0]) # => [0, 1, 2]

Returns a copy of self if no arguments given.

Related: Array#&.



5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
# File 'array.c', line 5540

static VALUE
rb_ary_intersection_multi(int argc, VALUE *argv, VALUE ary)
{
    VALUE result = rb_ary_dup(ary);
    int i;

    for (i = 0; i < argc; i++) {
        result = rb_ary_and(result, argv[i]);
    }

    return result;
}

#-Object #join(separator = $,) ⇒ Object

Returns the new String formed by joining the array elements after conversion. For each element element:

  • Uses element.to_s if element is not a kind_of?(Array).

  • Uses recursive element.join(separator) if element is a kind_of?(Array).

With no argument, joins using the output field separator, $,:

a = [:foo, 'bar', 2]
$, # => nil
a.join # => "foobar2"

With string argument separator, joins using that separator:

a = [:foo, 'bar', 2]
a.join("\n") # => "foo\nbar\n2"

Joins recursively for nested Arrays:

a = [:foo, [:bar, [:baz, :bat]]]
a.join # => "foobarbazbat"


2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
# File 'array.c', line 2872

static VALUE
rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE sep;

    if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(sep = argv[0])) {
        sep = rb_output_fs;
        if (!NIL_P(sep)) {
            rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "$, is set to non-nil value");
        }
    }

    return rb_ary_join(ary, sep);
}

#keep_if {|element| ... } ⇒ self #keep_ifObject

Retains those elements for which the block returns a truthy value; deletes all other elements; returns self:

a = [:foo, 'bar', 2, :bam]
a.keep_if {|element| element.to_s.start_with?('b') } # => ["bar", :bam]

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2, :bam]
a.keep_if # => #<Enumerator: [:foo, "bar", 2, :bam]:keep_if>

Overloads:

  • #keep_if {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)


3915
3916
3917
3918
3919
3920
3921
# File 'array.c', line 3915

static VALUE
rb_ary_keep_if(VALUE ary)
{
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_select_bang(ary);
    return ary;
}

#lengthInteger

Returns the count of elements in self.

Returns:



2670
2671
2672
2673
2674
2675
# File 'array.c', line 2670

static VALUE
rb_ary_length(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    return LONG2NUM(len);
}

#map {|element| ... } ⇒ Object #mapObject

Calls the block, if given, with each element of self; returns a new Array whose elements are the return values from the block:

a = [:foo, 'bar', 2]
a1 = a.map {|element| element.class }
a1 # => [Symbol, String, Integer]

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2]
a1 = a.map
a1 # => #<Enumerator: [:foo, "bar", 2]:map>

Overloads:

  • #map {|element| ... } ⇒ Object

    Yields:

    • (element)


3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
# File 'array.c', line 3624

static VALUE
rb_ary_collect(VALUE ary)
{
    long i;
    VALUE collect;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    collect = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        rb_ary_push(collect, rb_yield(RARRAY_AREF(ary, i)));
    }
    return collect;
}

#map! {|element| ... } ⇒ self #map!Object

Calls the block, if given, with each element; replaces the element with the block’s return value:

a = [:foo, 'bar', 2]
a.map! { |element| element.class } # => [Symbol, String, Integer]

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2]
a1 = a.map!
a1 # => #<Enumerator: [:foo, "bar", 2]:map!>

Overloads:

  • #map! {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)


3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
# File 'array.c', line 3658

static VALUE
rb_ary_collect_bang(VALUE ary)
{
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        rb_ary_store(ary, i, rb_yield(RARRAY_AREF(ary, i)));
    }
    return ary;
}

#maxObject #max {|a, b| ... } ⇒ Object #max(n) ⇒ Object #max(n) {|a, b| ... } ⇒ Object

Returns one of the following:

  • The maximum-valued element from self.

  • A new Array of maximum-valued elements selected from self.

When no block is given, each element in self must respond to method <=> with an Integer.

With no argument and no block, returns the element in self having the maximum value per method <=>:

[0, 1, 2].max # => 2

With an argument Integer n and no block, returns a new Array with at most n elements, in descending order per method <=>:

[0, 1, 2, 3].max(3) # => [3, 2, 1]
[0, 1, 2, 3].max(6) # => [3, 2, 1, 0]

When a block is given, the block must return an Integer.

With a block and no argument, calls the block self.size-1 times to compare elements; returns the element having the maximum value per the block:

['0', '00', '000'].max {|a, b| a.size <=> b.size } # => "000"

With an argument n and a block, returns a new Array with at most n elements, in descending order per the block:

['0', '00', '000'].max(2) {|a, b| a.size <=> b.size } # => ["000", "00"]

Overloads:

  • #max {|a, b| ... } ⇒ Object

    Yields:

    • (a, b)
  • #max(n) {|a, b| ... } ⇒ Object

    Yields:

    • (a, b)


5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
# File 'array.c', line 5847

static VALUE
rb_ary_max(int argc, VALUE *argv, VALUE ary)
{
    VALUE result = Qundef, v;
    VALUE num;
    long i;

    if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
       return rb_nmin_run(ary, num, 0, 1, 1);

    const long n = RARRAY_LEN(ary);
    if (rb_block_given_p()) {
        for (i = 0; i < RARRAY_LEN(ary); i++) {
           v = RARRAY_AREF(ary, i);
           if (UNDEF_P(result) || rb_cmpint(rb_yield_values(2, v, result), v, result) > 0) {
               result = v;
           }
        }
    }
    else if (n > 0) {
        result = RARRAY_AREF(ary, 0);
        if (n > 1) {
            if (FIXNUM_P(result) && CMP_OPTIMIZABLE(INTEGER)) {
                return ary_max_opt_fixnum(ary, 1, result);
            }
            else if (STRING_P(result) && CMP_OPTIMIZABLE(STRING)) {
                return ary_max_opt_string(ary, 1, result);
            }
            else if (RB_FLOAT_TYPE_P(result) && CMP_OPTIMIZABLE(FLOAT)) {
                return ary_max_opt_float(ary, 1, result);
            }
            else {
                return ary_max_generic(ary, 1, result);
            }
        }
    }
    if (UNDEF_P(result)) return Qnil;
    return result;
}

#minObject #min {|a, b| ... } ⇒ Object #min(n) ⇒ Object #min(n) {|a, b| ... } ⇒ Object

Returns one of the following:

  • The minimum-valued element from self.

  • A new Array of minimum-valued elements selected from self.

When no block is given, each element in self must respond to method <=> with an Integer.

With no argument and no block, returns the element in self having the minimum value per method <=>:

[0, 1, 2].min # => 0

With Integer argument n and no block, returns a new Array with at most n elements, in ascending order per method <=>:

[0, 1, 2, 3].min(3) # => [0, 1, 2]
[0, 1, 2, 3].min(6) # => [0, 1, 2, 3]

When a block is given, the block must return an Integer.

With a block and no argument, calls the block self.size-1 times to compare elements; returns the element having the minimum value per the block:

['0', '00', '000'].min { |a, b| a.size <=> b.size } # => "0"

With an argument n and a block, returns a new Array with at most n elements, in ascending order per the block:

['0', '00', '000'].min(2) {|a, b| a.size <=> b.size } # => ["0", "00"]

Overloads:

  • #min {|a, b| ... } ⇒ Object

    Yields:

    • (a, b)
  • #min(n) {|a, b| ... } ⇒ Object

    Yields:

    • (a, b)


6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
# File 'array.c', line 6015

static VALUE
rb_ary_min(int argc, VALUE *argv, VALUE ary)
{
    VALUE result = Qundef, v;
    VALUE num;
    long i;

    if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
       return rb_nmin_run(ary, num, 0, 0, 1);

    const long n = RARRAY_LEN(ary);
    if (rb_block_given_p()) {
        for (i = 0; i < RARRAY_LEN(ary); i++) {
           v = RARRAY_AREF(ary, i);
           if (UNDEF_P(result) || rb_cmpint(rb_yield_values(2, v, result), v, result) < 0) {
               result = v;
           }
        }
    }
    else if (n > 0) {
        result = RARRAY_AREF(ary, 0);
        if (n > 1) {
            if (FIXNUM_P(result) && CMP_OPTIMIZABLE(INTEGER)) {
                return ary_min_opt_fixnum(ary, 1, result);
            }
            else if (STRING_P(result) && CMP_OPTIMIZABLE(STRING)) {
                return ary_min_opt_string(ary, 1, result);
            }
            else if (RB_FLOAT_TYPE_P(result) && CMP_OPTIMIZABLE(FLOAT)) {
                return ary_min_opt_float(ary, 1, result);
            }
            else {
                return ary_min_generic(ary, 1, result);
            }
        }
    }
    if (UNDEF_P(result)) return Qnil;
    return result;
}

#minmaxArray #minmax {|a, b| ... } ⇒ Array

Returns a new 2-element Array containing the minimum and maximum values from self, either per method <=> or per a given block:.

When no block is given, each element in self must respond to method <=> with an Integer; returns a new 2-element Array containing the minimum and maximum values from self, per method <=>:

[0, 1, 2].minmax # => [0, 2]

When a block is given, the block must return an Integer; the block is called self.size-1 times to compare elements; returns a new 2-element Array containing the minimum and maximum values from self, per the block:

['0', '00', '000'].minmax {|a, b| a.size <=> b.size } # => ["0", "000"]

Overloads:

  • #minmaxArray

    Returns:

  • #minmax {|a, b| ... } ⇒ Array

    Yields:

    • (a, b)

    Returns:



6078
6079
6080
6081
6082
6083
6084
6085
# File 'array.c', line 6078

static VALUE
rb_ary_minmax(VALUE ary)
{
    if (rb_block_given_p()) {
        return rb_call_super(0, NULL);
    }
    return rb_assoc_new(rb_ary_min(0, 0, ary), rb_ary_max(0, 0, ary));
}

#none?Boolean #none? {|element| ... } ⇒ Boolean #none?(obj) ⇒ Boolean

Returns true if no element of self meet a given criterion.

With no block given and no argument, returns true if self has no truthy elements, false otherwise:

[nil, false].none? # => true
[nil, 0, false].none? # => false
[].none? # => true

With a block given and no argument, calls the block with each element in self; returns true if the block returns no truthy value, false otherwise:

[0, 1, 2].none? {|element| element > 3 } # => true
[0, 1, 2].none? {|element| element > 1 } # => false

If argument obj is given, returns true if obj.=== no element, false otherwise:

['food', 'drink'].none?(/bar/) # => true
['food', 'drink'].none?(/foo/) # => false
[].none?(/foo/) # => true
[0, 1, 2].none?(3) # => true
[0, 1, 2].none?(1) # => false

Related: Enumerable#none?

Overloads:

  • #none?Boolean

    Returns:

    • (Boolean)
  • #none? {|element| ... } ⇒ Boolean

    Yields:

    • (element)

    Returns:

    • (Boolean)
  • #none?(obj) ⇒ Boolean

    Returns:

    • (Boolean)


7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
# File 'array.c', line 7799

static VALUE
rb_ary_none_p(int argc, VALUE *argv, VALUE ary)
{
    long i, len = RARRAY_LEN(ary);

    rb_check_arity(argc, 0, 1);
    if (!len) return Qtrue;
    if (argc) {
        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qfalse;
        }
    }
    else if (!rb_block_given_p()) {
        for (i = 0; i < len; ++i) {
            if (RTEST(RARRAY_AREF(ary, i))) return Qfalse;
        }
    }
    else {
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qfalse;
        }
    }
    return Qtrue;
}

#one?Boolean #one? {|element| ... } ⇒ Boolean #one?(obj) ⇒ Boolean

Returns true if exactly one element of self meets a given criterion.

With no block given and no argument, returns true if self has exactly one truthy element, false otherwise:

[nil, 0].one? # => true
[0, 0].one? # => false
[nil, nil].one? # => false
[].one? # => false

With a block given and no argument, calls the block with each element in self; returns true if the block a truthy value for exactly one element, false otherwise:

[0, 1, 2].one? {|element| element > 0 } # => false
[0, 1, 2].one? {|element| element > 1 } # => true
[0, 1, 2].one? {|element| element > 2 } # => false

If argument obj is given, returns true if obj.=== exactly one element, false otherwise:

[0, 1, 2].one?(0) # => true
[0, 0, 1].one?(0) # => false
[1, 1, 2].one?(0) # => false
['food', 'drink'].one?(/bar/) # => false
['food', 'drink'].one?(/foo/) # => true
[].one?(/foo/) # => false

Related: Enumerable#one?

Overloads:

  • #one?Boolean

    Returns:

    • (Boolean)
  • #one? {|element| ... } ⇒ Boolean

    Yields:

    • (element)

    Returns:

    • (Boolean)
  • #one?(obj) ⇒ Boolean

    Returns:

    • (Boolean)


7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
# File 'array.c', line 7863

static VALUE
rb_ary_one_p(int argc, VALUE *argv, VALUE ary)
{
    long i, len = RARRAY_LEN(ary);
    VALUE result = Qfalse;

    rb_check_arity(argc, 0, 1);
    if (!len) return Qfalse;
    if (argc) {
        if (rb_block_given_p()) {
            rb_warn("given block not used");
        }
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) {
                if (result) return Qfalse;
                result = Qtrue;
            }
        }
    }
    else if (!rb_block_given_p()) {
        for (i = 0; i < len; ++i) {
            if (RTEST(RARRAY_AREF(ary, i))) {
                if (result) return Qfalse;
                result = Qtrue;
            }
        }
    }
    else {
        for (i = 0; i < RARRAY_LEN(ary); ++i) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
                if (result) return Qfalse;
                result = Qtrue;
            }
        }
    }
    return result;
}

#permutation {|element| ... } ⇒ self #permutation(n) {|element| ... } ⇒ self #permutationObject #permutation(n) ⇒ Object

When invoked with a block, yield all permutations of elements of self; returns self. The order of permutations is indeterminate.

When a block and an in-range positive Integer argument n (0 < n <= self.size) are given, calls the block with all n-tuple permutations of self.

Example:

a = [0, 1, 2]
a.permutation(2) {|permutation| p permutation }

Output:

[0, 1]
[0, 2]
[1, 0]
[1, 2]
[2, 0]
[2, 1]

Another example:

a = [0, 1, 2]
a.permutation(3) {|permutation| p permutation }

Output:

[0, 1, 2]
[0, 2, 1]
[1, 0, 2]
[1, 2, 0]
[2, 0, 1]
[2, 1, 0]

When n is zero, calls the block once with a new empty Array:

a = [0, 1, 2]
a.permutation(0) {|permutation| p permutation }

Output:

[]

When n is out of range (negative or larger than self.size), does not call the block:

a = [0, 1, 2]
a.permutation(-1) {|permutation| fail 'Cannot happen' }
a.permutation(4) {|permutation| fail 'Cannot happen' }

When a block given but no argument, behaves the same as a.permutation(a.size):

a = [0, 1, 2]
a.permutation {|permutation| p permutation }

Output:

[0, 1, 2]
[0, 2, 1]
[1, 0, 2]
[1, 2, 0]
[2, 0, 1]
[2, 1, 0]

Returns a new Enumerator if no block given:

a = [0, 1, 2]
a.permutation # => #<Enumerator: [0, 1, 2]:permutation>
a.permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)>

Overloads:

  • #permutation {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)
  • #permutation(n) {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)


6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
# File 'array.c', line 6931

static VALUE
rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
{
    long r, n, i;

    n = RARRAY_LEN(ary);                  /* Array length */
    RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_permutation_size);   /* Return enumerator if no block */
    r = n;
    if (rb_check_arity(argc, 0, 1) && !NIL_P(argv[0]))
        r = NUM2LONG(argv[0]);            /* Permutation size from argument */

    if (r < 0 || n < r) {
        /* no permutations: yield nothing */
    }
    else if (r == 0) { /* exactly one permutation: the zero-length array */
        rb_yield(rb_ary_new2(0));
    }
    else if (r == 1) { /* this is a special, easy case */
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
        }
    }
    else {             /* this is the general case */
        volatile VALUE t0;
        long *p = ALLOCV_N(long, t0, r+roomof(n, sizeof(long)));
        char *used = (char*)(p + r);
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        RBASIC_CLEAR_CLASS(ary0);

        MEMZERO(used, char, n); /* initialize array */

        permute0(n, r, p, used, ary0); /* compute and yield permutations */
        ALLOCV_END(t0);
        RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

#popObject? #pop(n) ⇒ Object

Removes and returns trailing elements.

When no argument is given and self is not empty, removes and returns the last element:

a = [:foo, 'bar', 2]
a.pop # => 2
a # => [:foo, "bar"]

Returns nil if the array is empty.

When a non-negative Integer argument n is given and is in range,

removes and returns the last n elements in a new Array:

a = [:foo, 'bar', 2]
a.pop(2) # => ["bar", 2]

If n is positive and out of range, removes and returns all elements:

a = [:foo, 'bar', 2]
a.pop(50) # => [:foo, "bar", 2]

Related: #push, #shift, #unshift.

Overloads:



1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
# File 'array.c', line 1436

static VALUE
rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE result;

    if (argc == 0) {
        return rb_ary_pop(ary);
    }

    rb_ary_modify_check(ary);
    result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
    ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
    ary_verify(ary);
    return result;
}

#product(*other_arrays) ⇒ Object #product(*other_arrays) {|combination| ... } ⇒ self

Computes and returns or yields all combinations of elements from all the Arrays, including both self and other_arrays:

  • The number of combinations is the product of the sizes of all the arrays, including both self and other_arrays.

  • The order of the returned combinations is indeterminate.

When no block is given, returns the combinations as an Array of Arrays:

a = [0, 1, 2]
a1 = [3, 4]
a2 = [5, 6]
p = a.product(a1)
p.size # => 6 # a.size * a1.size
p # => [[0, 3], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4]]
p = a.product(a1, a2)
p.size # => 12 # a.size * a1.size * a2.size
p # => [[0, 3, 5], [0, 3, 6], [0, 4, 5], [0, 4, 6], [1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [2, 3, 5], [2, 3, 6], [2, 4, 5], [2, 4, 6]]

If any argument is an empty Array, returns an empty Array.

If no argument is given, returns an Array of 1-element Arrays, each containing an element of self:

a.product # => [[0], [1], [2]]

When a block is given, yields each combination as an Array; returns self:

a.product(a1) {|combination| p combination }

Output:

[0, 3]
[0, 4]
[1, 3]
[1, 4]
[2, 3]
[2, 4]

If any argument is an empty Array, does not call the block:

a.product(a1, a2, []) {|combination| fail 'Cannot happen' }

If no argument is given, yields each element of self as a 1-element Array:

a.product {|combination| p combination }

Output:

[0]
[1]
[2]

Overloads:

  • #product(*other_arrays) {|combination| ... } ⇒ self

    Yields:

    Returns:

    • (self)


7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
# File 'array.c', line 7425

static VALUE
rb_ary_product(int argc, VALUE *argv, VALUE ary)
{
    int n = argc+1;    /* How many arrays we're operating on */
    volatile VALUE t0 = rb_ary_hidden_new(n);
    volatile VALUE t1 = Qundef;
    VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
    int *counters = ALLOCV_N(int, t1, n); /* The current position in each one */
    VALUE result = Qnil;      /* The array we'll be returning, when no block given */
    long i,j;
    long resultlen = 1;

    RBASIC_CLEAR_CLASS(t0);

    /* initialize the arrays of arrays */
    ARY_SET_LEN(t0, n);
    arrays[0] = ary;
    for (i = 1; i < n; i++) arrays[i] = Qnil;
    for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);

    /* initialize the counters for the arrays */
    for (i = 0; i < n; i++) counters[i] = 0;

    /* Otherwise, allocate and fill in an array of results */
    if (rb_block_given_p()) {
        /* Make defensive copies of arrays; exit if any is empty */
        for (i = 0; i < n; i++) {
            if (RARRAY_LEN(arrays[i]) == 0) goto done;
            arrays[i] = ary_make_shared_copy(arrays[i]);
        }
    }
    else {
        /* Compute the length of the result array; return [] if any is empty */
        for (i = 0; i < n; i++) {
            long k = RARRAY_LEN(arrays[i]);
            if (k == 0) {
                result = rb_ary_new2(0);
                goto done;
            }
            if (MUL_OVERFLOW_LONG_P(resultlen, k))
                rb_raise(rb_eRangeError, "too big to product");
            resultlen *= k;
        }
        result = rb_ary_new2(resultlen);
    }
    for (;;) {
        int m;
        /* fill in one subarray */
        VALUE subarray = rb_ary_new2(n);
        for (j = 0; j < n; j++) {
            rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
        }

        /* put it on the result array */
        if (NIL_P(result)) {
            FL_SET(t0, RARRAY_SHARED_ROOT_FLAG);
            rb_yield(subarray);
            if (!FL_TEST(t0, RARRAY_SHARED_ROOT_FLAG)) {
                rb_raise(rb_eRuntimeError, "product reentered");
            }
            else {
                FL_UNSET(t0, RARRAY_SHARED_ROOT_FLAG);
            }
        }
        else {
            rb_ary_push(result, subarray);
        }

        /*
         * Increment the last counter.  If it overflows, reset to 0
         * and increment the one before it.
         */
        m = n-1;
        counters[m]++;
        while (counters[m] == RARRAY_LEN(arrays[m])) {
            counters[m] = 0;
            /* If the first counter overflows, we are done */
            if (--m < 0) goto done;
            counters[m]++;
        }
    }

done:
    ALLOCV_END(t1);

    return NIL_P(result) ? ary : result;
}

#push(*objects) ⇒ self Also known as: append

Appends trailing elements.

Appends each argument in objects to self; returns self:

a = [:foo, 'bar', 2]
a.push(:baz, :bat) # => [:foo, "bar", 2, :baz, :bat]

Appends each argument as one element, even if it is another Array:

a = [:foo, 'bar', 2]
a1 = a.push([:baz, :bat], [:bam, :bad])
a1 # => [:foo, "bar", 2, [:baz, :bat], [:bam, :bad]]

Related: #pop, #shift, #unshift.

Returns:

  • (self)


1380
1381
1382
1383
1384
# File 'array.c', line 1380

static VALUE
rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
{
    return rb_ary_cat(ary, argv, argc);
}

#rassoc(obj) ⇒ nil

Returns the first element in self that is an Array whose second element == obj:

a = [{foo: 0}, [2, 4], [4, 5, 6], [4, 5]]
a.rassoc(4) # => [2, 4]

Returns nil if no such element is found.

Related: #assoc.

Returns:

  • (nil)


5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
# File 'array.c', line 5051

VALUE
rb_ary_rassoc(VALUE ary, VALUE value)
{
    long i;
    VALUE v;

    for (i = 0; i < RARRAY_LEN(ary); ++i) {
        v = rb_check_array_type(RARRAY_AREF(ary, i));
        if (RB_TYPE_P(v, T_ARRAY) &&
            RARRAY_LEN(v) > 1 &&
            rb_equal(RARRAY_AREF(v, 1), value))
            return v;
    }
    return Qnil;
}

#reject {|element| ... } ⇒ Object #rejectObject

Returns a new Array whose elements are all those from self for which the block returns false or nil:

a = [:foo, 'bar', 2, 'bat']
a1 = a.reject {|element| element.to_s.start_with?('b') }
a1 # => [:foo, 2]

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2]
a.reject # => #<Enumerator: [:foo, "bar", 2]:reject>

Overloads:

  • #reject {|element| ... } ⇒ Object

    Yields:

    • (element)


4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
# File 'array.c', line 4300

static VALUE
rb_ary_reject(VALUE ary)
{
    VALUE rejected_ary;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rejected_ary = rb_ary_new();
    ary_reject(ary, rejected_ary);
    return rejected_ary;
}

#reject! {|element| ... } ⇒ self? #reject!Object

Removes each element for which the block returns a truthy value.

Returns self if any elements removed:

a = [:foo, 'bar', 2, 'bat']
a.reject! {|element| element.to_s.start_with?('b') } # => [:foo, 2]

Returns nil if no elements removed.

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2]
a.reject! # => #<Enumerator: [:foo, "bar", 2]:reject!>

Overloads:

  • #reject! {|element| ... } ⇒ self?

    Yields:

    • (element)

    Returns:

    • (self, nil)


4273
4274
4275
4276
4277
4278
4279
# File 'array.c', line 4273

static VALUE
rb_ary_reject_bang(VALUE ary)
{
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    return ary_reject_bang(ary);
}

#repeated_combination(n) {|combination| ... } ⇒ self #repeated_combination(n) ⇒ Object

Calls the block with each repeated combination of length n of the elements of self; each combination is an Array; returns self. The order of the combinations is indeterminate.

When a block and a positive Integer argument n are given, calls the block with each n-tuple repeated combination of the elements of self. The number of combinations is (n+1)(n+2)/2.

n = 1:

a = [0, 1, 2]
a.repeated_combination(1) {|combination| p combination }

Output:

[0]
[1]
[2]

n = 2:

a.repeated_combination(2) {|combination| p combination }

Output:

[0, 0]
[0, 1]
[0, 2]
[1, 1]
[1, 2]
[2, 2]

If n is zero, calls the block once with an empty Array.

If n is negative, does not call the block:

a.repeated_combination(-1) {|combination| fail 'Cannot happen' }

Returns a new Enumerator if no block given:

a = [0, 1, 2]
a.repeated_combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)>

Using Enumerators, it’s convenient to show the combinations and counts for some values of n:

e = a.repeated_combination(0)
e.size # => 1
e.to_a # => [[]]
e = a.repeated_combination(1)
e.size # => 3
e.to_a # => [[0], [1], [2]]
e = a.repeated_combination(2)
e.size # => 6
e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 2]]

Overloads:

  • #repeated_combination(n) {|combination| ... } ⇒ self

    Yields:

    Returns:

    • (self)


7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
# File 'array.c', line 7330

static VALUE
rb_ary_repeated_combination(VALUE ary, VALUE num)
{
    long n, i, len;

    n = NUM2LONG(num);                 /* Combination size from argument */
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_combination_size);   /* Return enumerator if no block */
    len = RARRAY_LEN(ary);
    if (n < 0) {
        /* yield nothing */
    }
    else if (n == 0) {
        rb_yield(rb_ary_new2(0));
    }
    else if (n == 1) {
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
        }
    }
    else if (len == 0) {
        /* yield nothing */
    }
    else {
        volatile VALUE t0;
        long *p = ALLOCV_N(long, t0, n);
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        RBASIC_CLEAR_CLASS(ary0);

        rcombinate0(len, n, p, n, ary0); /* compute and yield repeated combinations */
        ALLOCV_END(t0);
        RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

#repeated_permutation(n) {|permutation| ... } ⇒ self #repeated_permutation(n) ⇒ Object

Calls the block with each repeated permutation of length n of the elements of self; each permutation is an Array; returns self. The order of the permutations is indeterminate.

When a block and a positive Integer argument n are given, calls the block with each n-tuple repeated permutation of the elements of self. The number of permutations is self.size**n.

n = 1:

a = [0, 1, 2]
a.repeated_permutation(1) {|permutation| p permutation }

Output:

[0]
[1]
[2]

n = 2:

a.repeated_permutation(2) {|permutation| p permutation }

Output:

[0, 0]
[0, 1]
[0, 2]
[1, 0]
[1, 1]
[1, 2]
[2, 0]
[2, 1]
[2, 2]

If n is zero, calls the block once with an empty Array.

If n is negative, does not call the block:

a.repeated_permutation(-1) {|permutation| fail 'Cannot happen' }

Returns a new Enumerator if no block given:

a = [0, 1, 2]
a.repeated_permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)>

Using Enumerators, it’s convenient to show the permutations and counts for some values of n:

e = a.repeated_permutation(0)
e.size # => 1
e.to_a # => [[]]
e = a.repeated_permutation(1)
e.size # => 3
e.to_a # => [[0], [1], [2]]
e = a.repeated_permutation(2)
e.size # => 9
e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]]

Overloads:

  • #repeated_permutation(n) {|permutation| ... } ⇒ self

    Yields:

    Returns:

    • (self)


7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
# File 'array.c', line 7200

static VALUE
rb_ary_repeated_permutation(VALUE ary, VALUE num)
{
    long r, n, i;

    n = RARRAY_LEN(ary);                  /* Array length */
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_permutation_size);      /* Return Enumerator if no block */
    r = NUM2LONG(num);                    /* Permutation size from argument */

    if (r < 0) {
        /* no permutations: yield nothing */
    }
    else if (r == 0) { /* exactly one permutation: the zero-length array */
        rb_yield(rb_ary_new2(0));
    }
    else if (r == 1) { /* this is a special, easy case */
        for (i = 0; i < RARRAY_LEN(ary); i++) {
            rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
        }
    }
    else {             /* this is the general case */
        volatile VALUE t0;
        long *p = ALLOCV_N(long, t0, r);
        VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
        RBASIC_CLEAR_CLASS(ary0);

        rpermute0(n, r, p, ary0); /* compute and yield repeated permutations */
        ALLOCV_END(t0);
        RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

#replace(other_array) ⇒ self

Replaces the content of self with the content of other_array; returns self:

a = [:foo, 'bar', 2]
a.replace(['foo', :bar, 3]) # => ["foo", :bar, 3]

Returns:

  • (self)


4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
# File 'array.c', line 4530

VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
    rb_ary_modify_check(copy);
    orig = to_ary(orig);
    if (copy == orig) return copy;

    rb_ary_reset(copy);

    /* orig has enough space to embed the contents of orig. */
    if (RARRAY_LEN(orig) <= ary_embed_capa(copy)) {
        assert(ARY_EMBED_P(copy));
        ary_memcpy(copy, 0, RARRAY_LEN(orig), RARRAY_CONST_PTR(orig));
        ARY_SET_EMBED_LEN(copy, RARRAY_LEN(orig));
    }
    /* orig is embedded but copy does not have enough space to embed the
     * contents of orig. */
    else if (ARY_EMBED_P(orig)) {
        long len = ARY_EMBED_LEN(orig);
        VALUE *ptr = ary_heap_alloc(len);

        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, ptr);
        ARY_SET_LEN(copy, len);
        ARY_SET_CAPA(copy, len);

        // No allocation and exception expected that could leave `copy` in a
        // bad state from the edits above.
        ary_memcpy(copy, 0, len, RARRAY_CONST_PTR(orig));
    }
    /* Otherwise, orig is on heap and copy does not have enough space to embed
     * the contents of orig. */
    else {
        VALUE shared_root = ary_make_shared(orig);
        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, ARY_HEAP_PTR(orig));
        ARY_SET_LEN(copy, ARY_HEAP_LEN(orig));
        rb_ary_set_shared(copy, shared_root);
    }
    ary_verify(copy);
    return copy;
}

#reverseObject

Returns a new Array with the elements of self in reverse order:

a = ['foo', 'bar', 'two']
a1 = a.reverse
a1 # => ["two", "bar", "foo"]


3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
# File 'array.c', line 3079

static VALUE
rb_ary_reverse_m(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    VALUE dup = rb_ary_new2(len);

    if (len > 0) {
        const VALUE *p1 = RARRAY_CONST_PTR(ary);
        VALUE *p2 = (VALUE *)RARRAY_CONST_PTR(dup) + len - 1;
        do *p2-- = *p1++; while (--len > 0);
    }
    ARY_SET_LEN(dup, RARRAY_LEN(ary));
    return dup;
}

#reverse!self

Reverses self in place:

a = ['foo', 'bar', 'two']
a.reverse! # => ["two", "bar", "foo"]

Returns:

  • (self)


3061
3062
3063
3064
3065
# File 'array.c', line 3061

static VALUE
rb_ary_reverse_bang(VALUE ary)
{
    return rb_ary_reverse(ary);
}

#reverse_each {|element| ... } ⇒ self #reverse_eachEnumerator

Iterates backwards over array elements.

When a block given, passes, in reverse order, each element to the block; returns self:

a = [:foo, 'bar', 2]
a.reverse_each {|element|  puts "#{element.class} #{element}" }

Output:

Integer 2
String bar
Symbol foo

Allows the array to be modified during iteration:

a = [:foo, 'bar', 2]
a.reverse_each {|element| puts element; a.clear if element.to_s.start_with?('b') }

Output:

2
bar

When no block given, returns a new Enumerator:

a = [:foo, 'bar', 2]
e = a.reverse_each
e # => #<Enumerator: [:foo, "bar", 2]:reverse_each>
a1 = e.each {|element|  puts "#{element.class} #{element}" }

Output:

Integer 2
String bar
Symbol foo

Related: #each, #each_index.

Overloads:

  • #reverse_each {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)
  • #reverse_eachEnumerator

    Returns:



2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
# File 'array.c', line 2645

static VALUE
rb_ary_reverse_each(VALUE ary)
{
    long len;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    len = RARRAY_LEN(ary);
    while (len--) {
        long nlen;
        rb_yield(RARRAY_AREF(ary, len));
        nlen = RARRAY_LEN(ary);
        if (nlen < len) {
            len = nlen;
        }
    }
    return ary;
}

#rindex(object) ⇒ Integer? #rindex {|element| ... } ⇒ Integer? #rindexObject

Returns the index of the last element for which object == element.

When argument object is given but no block, returns the index of the last such element found:

a = [:foo, 'bar', 2, 'bar']
a.rindex('bar') # => 3

Returns nil if no such object found.

When a block is given but no argument, calls the block with each successive element; returns the index of the last element for which the block returns a truthy value:

a = [:foo, 'bar', 2, 'bar']
a.rindex {|element| element == 'bar' } # => 3

Returns nil if the block never returns a truthy value.

When neither an argument nor a block is given, returns a new Enumerator:

a = [:foo, 'bar', 2, 'bar']
e = a.rindex
e # => #<Enumerator: [:foo, "bar", 2, "bar"]:rindex>
e.each {|element| element == 'bar' } # => 3

Related: #index.

Overloads:



2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
# File 'array.c', line 2086

static VALUE
rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i = RARRAY_LEN(ary), len;

    if (argc == 0) {
        RETURN_ENUMERATOR(ary, 0, 0);
        while (i--) {
            if (RTEST(rb_yield(RARRAY_AREF(ary, i))))
                return LONG2NUM(i);
            if (i > (len = RARRAY_LEN(ary))) {
                i = len;
            }
        }
        return Qnil;
    }
    rb_check_arity(argc, 0, 1);
    val = argv[0];
    if (rb_block_given_p())
        rb_warn("given block not used");
    while (i--) {
        VALUE e = RARRAY_AREF(ary, i);
        if (rb_equal(e, val)) {
            return LONG2NUM(i);
        }
        if (i > RARRAY_LEN(ary)) {
            break;
        }
    }
    return Qnil;
}

#rotateObject #rotate(count) ⇒ Object

Returns a new Array formed from self with elements rotated from one end to the other.

When no argument given, returns a new Array that is like self, except that the first element has been rotated to the last position:

a = [:foo, 'bar', 2, 'bar']
a1 = a.rotate
a1 # => ["bar", 2, "bar", :foo]

When given a non-negative Integer count, returns a new Array with count elements rotated from the beginning to the end:

a = [:foo, 'bar', 2]
a1 = a.rotate(2)
a1 # => [2, :foo, "bar"]

If count is large, uses count % array.size as the count:

a = [:foo, 'bar', 2]
a1 = a.rotate(20)
a1 # => [2, :foo, "bar"]

If count is zero, returns a copy of self, unmodified:

a = [:foo, 'bar', 2]
a1 = a.rotate(0)
a1 # => [:foo, "bar", 2]

When given a negative Integer count, rotates in the opposite direction, from end to beginning:

a = [:foo, 'bar', 2]
a1 = a.rotate(-2)
a1 # => ["bar", 2, :foo]

If count is small (far from zero), uses count % array.size as the count:

a = [:foo, 'bar', 2]
a1 = a.rotate(-5)
a1 # => ["bar", 2, :foo]


3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
# File 'array.c', line 3239

static VALUE
rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE rotated;
    const VALUE *ptr;
    long len;
    long cnt = (rb_check_arity(argc, 0, 1) ? NUM2LONG(argv[0]) : 1);

    len = RARRAY_LEN(ary);
    rotated = rb_ary_new2(len);
    if (len > 0) {
        cnt = rotate_count(cnt, len);
        ptr = RARRAY_CONST_PTR(ary);
        len -= cnt;
        ary_memcpy(rotated, 0, len, ptr + cnt);
        ary_memcpy(rotated, len, cnt, ptr);
    }
    ARY_SET_LEN(rotated, RARRAY_LEN(ary));
    return rotated;
}

#rotate!self #rotate!(count) ⇒ self

Rotates self in place by moving elements from one end to the other; returns self.

When no argument given, rotates the first element to the last position:

a = [:foo, 'bar', 2, 'bar']
a.rotate! # => ["bar", 2, "bar", :foo]

When given a non-negative Integer count, rotates count elements from the beginning to the end:

a = [:foo, 'bar', 2]
a.rotate!(2)
a # => [2, :foo, "bar"]

If count is large, uses count % array.size as the count:

a = [:foo, 'bar', 2]
a.rotate!(20)
a # => [2, :foo, "bar"]

If count is zero, returns self unmodified:

a = [:foo, 'bar', 2]
a.rotate!(0)
a # => [:foo, "bar", 2]

When given a negative Integer count, rotates in the opposite direction, from end to beginning:

a = [:foo, 'bar', 2]
a.rotate!(-2)
a # => ["bar", 2, :foo]

If count is small (far from zero), uses count % array.size as the count:

a = [:foo, 'bar', 2]
a.rotate!(-5)
a # => ["bar", 2, :foo]

Overloads:

  • #rotate!self

    Returns:

    • (self)
  • #rotate!(count) ⇒ self

    Returns:

    • (self)


3182
3183
3184
3185
3186
3187
3188
# File 'array.c', line 3182

static VALUE
rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
{
    long n = (rb_check_arity(argc, 0, 1) ? NUM2LONG(argv[0]) : 1);
    rb_ary_rotate(ary, n);
    return ary;
}

#select {|element| ... } ⇒ Object #selectObject

Calls the block, if given, with each element of self; returns a new Array containing those elements of self for which the block returns a truthy value:

a = [:foo, 'bar', 2, :bam]
a1 = a.select {|element| element.to_s.start_with?('b') }
a1 # => ["bar", :bam]

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2, :bam]
a.select # => #<Enumerator: [:foo, "bar", 2, :bam]:select>

Overloads:

  • #select {|element| ... } ⇒ Object

    Yields:

    • (element)


3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
# File 'array.c', line 3801

static VALUE
rb_ary_select(VALUE ary)
{
    VALUE result;
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    result = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
            rb_ary_push(result, rb_ary_elt(ary, i));
        }
    }
    return result;
}

#select! {|element| ... } ⇒ self? #select!Object

Calls the block, if given with each element of self; removes from self those elements for which the block returns false or nil.

Returns self if any elements were removed:

a = [:foo, 'bar', 2, :bam]
a.select! {|element| element.to_s.start_with?('b') } # => ["bar", :bam]

Returns nil if no elements were removed.

Returns a new Enumerator if no block given:

a = [:foo, 'bar', 2, :bam]
a.select! # => #<Enumerator: [:foo, "bar", 2, :bam]:select!>

Overloads:

  • #select! {|element| ... } ⇒ self?

    Yields:

    • (element)

    Returns:

    • (self, nil)


3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
# File 'array.c', line 3884

static VALUE
rb_ary_select_bang(VALUE ary)
{
    struct select_bang_arg args;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);

    args.ary = ary;
    args.len[0] = args.len[1] = 0;
    return rb_ensure(select_bang_i, (VALUE)&args, select_bang_ensure, (VALUE)&args);
}

#shiftObject? #shift(n) ⇒ Object

Removes and returns leading elements.

When no argument is given, removes and returns the first element:

a = [:foo, 'bar', 2]
a.shift # => :foo
a # => ['bar', 2]

Returns nil if self is empty.

When positive Integer argument n is given, removes the first n elements; returns those elements in a new Array:

a = [:foo, 'bar', 2]
a.shift(2) # => [:foo, 'bar']
a # => [2]

If n is as large as or larger than self.length, removes all elements; returns those elements in a new Array:

a = [:foo, 'bar', 2]
a.shift(3) # => [:foo, 'bar', 2]

If n is zero, returns a new empty Array; self is unmodified.

Related: #push, #pop, #unshift.

Overloads:



1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
# File 'array.c', line 1503

static VALUE
rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE result;
    long n;

    if (argc == 0) {
        return rb_ary_shift(ary);
    }

    rb_ary_modify_check(ary);
    result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
    n = RARRAY_LEN(result);
    rb_ary_behead(ary,n);

    return result;
}

#lengthInteger

Returns the count of elements in self.

Returns:



2670
2671
2672
2673
2674
2675
# File 'array.c', line 2670

static VALUE
rb_ary_length(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    return LONG2NUM(len);
}

#[](index) ⇒ Object? #[](start, length) ⇒ Object? #[](range) ⇒ Object? #[](aseq) ⇒ Object? #slice(index) ⇒ Object? #slice(start, length) ⇒ Object? #slice(range) ⇒ Object? #slice(aseq) ⇒ Object?

Returns elements from self; does not modify self.

When a single Integer argument index is given, returns the element at offset index:

a = [:foo, 'bar', 2]
a[0] # => :foo
a[2] # => 2
a # => [:foo, "bar", 2]

If index is negative, counts relative to the end of self:

a = [:foo, 'bar', 2]
a[-1] # => 2
a[-2] # => "bar"

If index is out of range, returns nil.

When two Integer arguments start and length are given, returns a new Array of size length containing successive elements beginning at offset start:

a = [:foo, 'bar', 2]
a[0, 2] # => [:foo, "bar"]
a[1, 2] # => ["bar", 2]

If start + length is greater than self.length, returns all elements from offset start to the end:

a = [:foo, 'bar', 2]
a[0, 4] # => [:foo, "bar", 2]
a[1, 3] # => ["bar", 2]
a[2, 2] # => [2]

If start == self.size and length >= 0, returns a new empty Array.

If length is negative, returns nil.

When a single Range argument range is given, treats range.min as start above and range.size as length above:

a = [:foo, 'bar', 2]
a[0..1] # => [:foo, "bar"]
a[1..2] # => ["bar", 2]

Special case: If range.start == a.size, returns a new empty Array.

If range.end is negative, calculates the end index from the end:

a = [:foo, 'bar', 2]
a[0..-1] # => [:foo, "bar", 2]
a[0..-2] # => [:foo, "bar"]
a[0..-3] # => [:foo]

If range.start is negative, calculates the start index from the end:

a = [:foo, 'bar', 2]
a[-1..2] # => [2]
a[-2..2] # => ["bar", 2]
a[-3..2] # => [:foo, "bar", 2]

If range.start is larger than the array size, returns nil.

a = [:foo, 'bar', 2]
a[4..1] # => nil
a[4..0] # => nil
a[4..-1] # => nil

When a single Enumerator::ArithmeticSequence argument aseq is given, returns an Array of elements corresponding to the indexes produced by the sequence.

a = ['--', 'data1', '--', 'data2', '--', 'data3']
a[(1..).step(2)] # => ["data1", "data2", "data3"]

Unlike slicing with range, if the start or the end of the arithmetic sequence is larger than array size, throws RangeError.

a = ['--', 'data1', '--', 'data2', '--', 'data3']
a[(1..11).step(2)]
# RangeError (((1..11).step(2)) out of range)
a[(7..).step(2)]
# RangeError (((7..).step(2)) out of range)

If given a single argument, and its type is not one of the listed, tries to convert it to Integer, and raises if it is impossible:

a = [:foo, 'bar', 2]
# Raises TypeError (no implicit conversion of Symbol into Integer):
a[:foo]

Overloads:



1826
1827
1828
1829
1830
1831
1832
1833
1834
# File 'array.c', line 1826

VALUE
rb_ary_aref(int argc, const VALUE *argv, VALUE ary)
{
    rb_check_arity(argc, 1, 2);
    if (argc == 2) {
        return rb_ary_aref2(ary, argv[0], argv[1]);
    }
    return rb_ary_aref1(ary, argv[0]);
}

#slice!(n) ⇒ Object? #slice!(start, length) ⇒ nil #slice!(range) ⇒ nil

Removes and returns elements from self.

When the only argument is an Integer n, removes and returns the nth element in self:

a = [:foo, 'bar', 2]
a.slice!(1) # => "bar"
a # => [:foo, 2]

If n is negative, counts backwards from the end of self:

a = [:foo, 'bar', 2]
a.slice!(-1) # => 2
a # => [:foo, "bar"]

If n is out of range, returns nil.

When the only arguments are Integers start and length, removes length elements from self beginning at offset start; returns the deleted objects in a new Array:

a = [:foo, 'bar', 2]
a.slice!(0, 2) # => [:foo, "bar"]
a # => [2]

If start + length exceeds the array size, removes and returns all elements from offset start to the end:

a = [:foo, 'bar', 2]
a.slice!(1, 50) # => ["bar", 2]
a # => [:foo]

If start == a.size and length is non-negative, returns a new empty Array.

If length is negative, returns nil.

When the only argument is a Range object range, treats range.min as start above and range.size as length above:

a = [:foo, 'bar', 2]
a.slice!(1..2) # => ["bar", 2]
a # => [:foo]

If range.start == a.size, returns a new empty Array.

If range.start is larger than the array size, returns nil.

If range.end is negative, counts backwards from the end of the array:

a = [:foo, 'bar', 2]
a.slice!(0..-2) # => [:foo, "bar"]
a # => [2]

If range.start is negative, calculates the start index backwards from the end of the array:

a = [:foo, 'bar', 2]
a.slice!(-2..2) # => ["bar", 2]
a # => [:foo]

Overloads:

  • #slice!(n) ⇒ Object?

    Returns:

  • #slice!(start, length) ⇒ nil

    Returns:

    • (nil)
  • #slice!(range) ⇒ nil

    Returns:

    • (nil)


4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
# File 'array.c', line 4176

static VALUE
rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg1;
    long pos, len;

    rb_ary_modify_check(ary);
    rb_check_arity(argc, 1, 2);
    arg1 = argv[0];

    if (argc == 2) {
        pos = NUM2LONG(argv[0]);
        len = NUM2LONG(argv[1]);
        return ary_slice_bang_by_rb_ary_splice(ary, pos, len);
    }

    if (!FIXNUM_P(arg1)) {
        switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
          case Qtrue:
            /* valid range */
            return ary_slice_bang_by_rb_ary_splice(ary, pos, len);
          case Qnil:
            /* invalid range */
            return Qnil;
          default:
            /* not a range */
            break;
        }
    }

    return rb_ary_delete_at(ary, NUM2LONG(arg1));
}

#sortObject #sort {|a, b| ... } ⇒ Object

Returns a new Array whose elements are those from self, sorted.

With no block, compares elements using operator <=> (see Comparable):

a = 'abcde'.split('').shuffle
a # => ["e", "b", "d", "a", "c"]
a1 = a.sort
a1 # => ["a", "b", "c", "d", "e"]

With a block, calls the block with each element pair; for each element pair a and b, the block should return an integer:

  • Negative when b is to follow a.

  • Zero when a and b are equivalent.

  • Positive when a is to follow b.

Example:

a = 'abcde'.split('').shuffle
a # => ["e", "b", "d", "a", "c"]
a1 = a.sort {|a, b| a <=> b }
a1 # => ["a", "b", "c", "d", "e"]
a2 = a.sort {|a, b| b <=> a }
a2 # => ["e", "d", "c", "b", "a"]

When the block returns zero, the order for a and b is indeterminate, and may be unstable:

a = 'abcde'.split('').shuffle
a # => ["e", "b", "d", "a", "c"]
a1 = a.sort {|a, b| 0 }
a1 # =>  ["c", "e", "b", "d", "a"]

Related: Enumerable#sort_by.

Overloads:

  • #sort {|a, b| ... } ⇒ Object

    Yields:

    • (a, b)


3472
3473
3474
3475
3476
3477
3478
# File 'array.c', line 3472

VALUE
rb_ary_sort(VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_sort_bang(ary);
    return ary;
}

#sort!self #sort! {|a, b| ... } ⇒ self

Returns self with its elements sorted in place.

With no block, compares elements using operator <=> (see Comparable):

a = 'abcde'.split('').shuffle
a # => ["e", "b", "d", "a", "c"]
a.sort!
a # => ["a", "b", "c", "d", "e"]

With a block, calls the block with each element pair; for each element pair a and b, the block should return an integer:

  • Negative when b is to follow a.

  • Zero when a and b are equivalent.

  • Positive when a is to follow b.

Example:

a = 'abcde'.split('').shuffle
a # => ["e", "b", "d", "a", "c"]
a.sort! {|a, b| a <=> b }
a # => ["a", "b", "c", "d", "e"]
a.sort! {|a, b| b <=> a }
a # => ["e", "d", "c", "b", "a"]

When the block returns zero, the order for a and b is indeterminate, and may be unstable:

a = 'abcde'.split('').shuffle
a # => ["e", "b", "d", "a", "c"]
a.sort! {|a, b| 0 }
a # => ["d", "e", "c", "a", "b"]

Overloads:

  • #sort!self

    Returns:

    • (self)
  • #sort! {|a, b| ... } ⇒ self

    Yields:

    • (a, b)

    Returns:

    • (self)


3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
# File 'array.c', line 3368

VALUE
rb_ary_sort_bang(VALUE ary)
{
    rb_ary_modify(ary);
    assert(!ARY_SHARED_P(ary));
    if (RARRAY_LEN(ary) > 1) {
        VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
        struct ary_sort_data data;
        long len = RARRAY_LEN(ary);
        RBASIC_CLEAR_CLASS(tmp);
        data.ary = tmp;
        data.receiver = ary;
        RARRAY_PTR_USE(tmp, ptr, {
            ruby_qsort(ptr, len, sizeof(VALUE),
                       rb_block_given_p()?sort_1:sort_2, &data);
        }); /* WB: no new reference */
        rb_ary_modify(ary);
        if (ARY_EMBED_P(tmp)) {
            if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
                rb_ary_unshare(ary);
                FL_SET_EMBED(ary);
            }
            if (ARY_EMBED_LEN(tmp) > ARY_CAPA(ary)) {
                ary_resize_capa(ary, ARY_EMBED_LEN(tmp));
            }
            ary_memcpy(ary, 0, ARY_EMBED_LEN(tmp), ARY_EMBED_PTR(tmp));
            ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
        }
        else {
            if (!ARY_EMBED_P(ary) && ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
                FL_UNSET_SHARED(ary);
                ARY_SET_CAPA(ary, RARRAY_LEN(tmp));
            }
            else {
                assert(!ARY_SHARED_P(tmp));
                if (ARY_EMBED_P(ary)) {
                    FL_UNSET_EMBED(ary);
                }
                else if (ARY_SHARED_P(ary)) {
                    /* ary might be destructively operated in the given block */
                    rb_ary_unshare(ary);
                }
                else {
                    ary_heap_free(ary);
                }
                ARY_SET_PTR(ary, ARY_HEAP_PTR(tmp));
                ARY_SET_HEAP_LEN(ary, len);
                ARY_SET_CAPA(ary, ARY_HEAP_LEN(tmp));
            }
            /* tmp was lost ownership for the ptr */
            FL_UNSET(tmp, FL_FREEZE);
            FL_SET_EMBED(tmp);
            ARY_SET_EMBED_LEN(tmp, 0);
            FL_SET(tmp, FL_FREEZE);
        }
        /* tmp will be GC'ed. */
        RBASIC_SET_CLASS_RAW(tmp, rb_cArray); /* rb_cArray must be marked */
    }
    ary_verify(ary);
    return ary;
}

#sort_by! {|element| ... } ⇒ self #sort_by!Object

Sorts the elements of self in place, using an ordering determined by the block; returns self.

Calls the block with each successive element; sorts elements based on the values returned from the block.

For duplicates returned by the block, the ordering is indeterminate, and may be unstable.

This example sorts strings based on their sizes:

a = ['aaaa', 'bbb', 'cc', 'd']
a.sort_by! {|element| element.size }
a # => ["d", "cc", "bbb", "aaaa"]

Returns a new Enumerator if no block given:

a = ['aaaa', 'bbb', 'cc', 'd']
a.sort_by! # => #<Enumerator: ["aaaa", "bbb", "cc", "d"]:sort_by!>

Overloads:

  • #sort_by! {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)


3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
# File 'array.c', line 3592

static VALUE
rb_ary_sort_by_bang(VALUE ary)
{
    VALUE sorted;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
    rb_ary_replace(ary, sorted);
    return ary;
}

#sum(init = 0) ⇒ Object #sum(init = 0) {|element| ... } ⇒ Object

When no block is given, returns the object equivalent to:

  sum = init
  array.each {|element| sum += element }
  sum

For example, <tt>[e1, e2, e3].sum</tt> returns <tt>init + e1 + e2 + e3</tt>.

Examples:

  a = [0, 1, 2, 3]
  a.sum # => 6
  a.sum(100) # => 106

The elements need not be numeric, but must be <tt>+</tt>-compatible
with each other and with +init+:

  a = ['abc', 'def', 'ghi']
  a.sum('jkl') # => "jklabcdefghi"

When a block is given, it is called with each element
and the block's return value (instead of the element itself) is used as the addend:

  a = ['zero', 1, :two]
  s = a.sum('Coerced and concatenated: ') {|element| element.to_s }
  s # => "Coerced and concatenated: zero1two"

Notes:

- Array#join and Array#flatten may be faster than Array#sum
  for an \Array of Strings or an \Array of Arrays.
- Array#sum method may not respect method redefinition of "+" methods such as Integer#+.

Overloads:

  • #sum(init = 0) ⇒ Object

    Returns:

  • #sum(init = 0) {|element| ... } ⇒ Object

    Yields:

    • (element)

    Returns:



7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
# File 'array.c', line 7984

static VALUE
rb_ary_sum(int argc, VALUE *argv, VALUE ary)
{
    VALUE e, v, r;
    long i, n;
    int block_given;

    v = (rb_check_arity(argc, 0, 1) ? argv[0] : LONG2FIX(0));

    block_given = rb_block_given_p();

    if (RARRAY_LEN(ary) == 0)
        return v;

    n = 0;
    r = Qundef;

    if (!FIXNUM_P(v) && !RB_BIGNUM_TYPE_P(v) && !RB_TYPE_P(v, T_RATIONAL)) {
        i = 0;
        goto init_is_a_value;
    }

    for (i = 0; i < RARRAY_LEN(ary); i++) {
        e = RARRAY_AREF(ary, i);
        if (block_given)
            e = rb_yield(e);
        if (FIXNUM_P(e)) {
            n += FIX2LONG(e); /* should not overflow long type */
            if (!FIXABLE(n)) {
                v = rb_big_plus(LONG2NUM(n), v);
                n = 0;
            }
        }
        else if (RB_BIGNUM_TYPE_P(e))
            v = rb_big_plus(e, v);
        else if (RB_TYPE_P(e, T_RATIONAL)) {
            if (UNDEF_P(r))
                r = e;
            else
                r = rb_rational_plus(r, e);
        }
        else
            goto not_exact;
    }
    v = finish_exact_sum(n, r, v, argc!=0);
    return v;

  not_exact:
    v = finish_exact_sum(n, r, v, i!=0);

    if (RB_FLOAT_TYPE_P(e)) {
        /*
         * Kahan-Babuska balancing compensated summation algorithm
         * See https://link.springer.com/article/10.1007/s00607-005-0139-x
         */
        double f, c;
        double x, t;

        f = NUM2DBL(v);
        c = 0.0;
        goto has_float_value;
        for (; i < RARRAY_LEN(ary); i++) {
            e = RARRAY_AREF(ary, i);
            if (block_given)
                e = rb_yield(e);
            if (RB_FLOAT_TYPE_P(e))
              has_float_value:
                x = RFLOAT_VALUE(e);
            else if (FIXNUM_P(e))
                x = FIX2LONG(e);
            else if (RB_BIGNUM_TYPE_P(e))
                x = rb_big2dbl(e);
            else if (RB_TYPE_P(e, T_RATIONAL))
                x = rb_num2dbl(e);
            else
                goto not_float;

            if (isnan(f)) continue;
            if (isnan(x)) {
                f = x;
                continue;
            }
            if (isinf(x)) {
                if (isinf(f) && signbit(x) != signbit(f))
                    f = NAN;
                else
                    f = x;
                continue;
            }
            if (isinf(f)) continue;

            t = f + x;
            if (fabs(f) >= fabs(x))
                c += ((f - t) + x);
            else
                c += ((x - t) + f);
            f = t;
        }
        f += c;
        return DBL2NUM(f);

      not_float:
        v = DBL2NUM(f);
    }

    goto has_some_value;
    init_is_a_value:
    for (; i < RARRAY_LEN(ary); i++) {
        e = RARRAY_AREF(ary, i);
        if (block_given)
            e = rb_yield(e);
      has_some_value:
        v = rb_funcall(v, idPLUS, 1, e);
    }
    return v;
}

#take(n) ⇒ Object

Returns a new Array containing the first n element of self, where n is a non-negative Integer; does not modify self.

Examples:

a = [0, 1, 2, 3, 4, 5]
a.take(1) # => [0]
a.take(2) # => [0, 1]
a.take(50) # => [0, 1, 2, 3, 4, 5]
a # => [0, 1, 2, 3, 4, 5]


7531
7532
7533
7534
7535
7536
7537
7538
7539
# File 'array.c', line 7531

static VALUE
rb_ary_take(VALUE obj, VALUE n)
{
    long len = NUM2LONG(n);
    if (len < 0) {
        rb_raise(rb_eArgError, "attempt to take negative size");
    }
    return rb_ary_subseq(obj, 0, len);
}

#take_while {|element| ... } ⇒ Object #take_whileObject

Returns a new Array containing zero or more leading elements of self; does not modify self.

With a block given, calls the block with each successive element of self; stops if the block returns false or nil; returns a new Array containing those elements for which the block returned a truthy value:

a = [0, 1, 2, 3, 4, 5]
a.take_while {|element| element < 3 } # => [0, 1, 2]
a.take_while {|element| true } # => [0, 1, 2, 3, 4, 5]
a # => [0, 1, 2, 3, 4, 5]

With no block given, returns a new Enumerator:

[0, 1].take_while # => #<Enumerator: [0, 1]:take_while>

Overloads:

  • #take_while {|element| ... } ⇒ Object

    Yields:

    • (element)


7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
# File 'array.c', line 7564

static VALUE
rb_ary_take_while(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
        if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
    }
    return rb_ary_take(ary, LONG2FIX(i));
}

#to_aself

When self is an instance of Array, returns self:

a = [:foo, 'bar', 2]
a.to_a # => [:foo, "bar", 2]

Otherwise, returns a new Array containing the elements of self:

class MyArray < Array; end
a = MyArray.new(['foo', 'bar', 'two'])
a.instance_of?(Array) # => false
a.kind_of?(Array) # => true
a1 = a.to_a
a1 # => ["foo", "bar", "two"]
a1.class # => Array # Not MyArray

Returns:

  • (self)


2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
# File 'array.c', line 2951

static VALUE
rb_ary_to_a(VALUE ary)
{
    if (rb_obj_class(ary) != rb_cArray) {
        VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
        rb_ary_replace(dup, ary);
        return dup;
    }
    return ary;
}

#to_aryself

Returns self.

Returns:

  • (self)


3018
3019
3020
3021
3022
# File 'array.c', line 3018

static VALUE
rb_ary_to_ary_m(VALUE ary)
{
    return ary;
}

#to_hObject #to_h {|item| ... } ⇒ Object

Returns a new Hash formed from self.

When a block is given, calls the block with each array element; the block must return a 2-element Array whose two elements form a key-value pair in the returned Hash:

a = ['foo', :bar, 1, [2, 3], {baz: 4}]
h = a.to_h {|item| [item, item] }
h # => {"foo"=>"foo", :bar=>:bar, 1=>1, [2, 3]=>[2, 3], {:baz=>4}=>{:baz=>4}}

When no block is given, self must be an Array of 2-element sub-arrays, each sub-array is formed into a key-value pair in the new Hash:

[].to_h # => {}
a = [['foo', 'zero'], ['bar', 'one'], ['baz', 'two']]
h = a.to_h
h # => {"foo"=>"zero", "bar"=>"one", "baz"=>"two"}

Overloads:

  • #to_h {|item| ... } ⇒ Object

    Yields:

    • (item)


2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
# File 'array.c', line 2987

static VALUE
rb_ary_to_h(VALUE ary)
{
    long i;
    VALUE hash = rb_hash_new_with_size(RARRAY_LEN(ary));
    int block_given = rb_block_given_p();

    for (i=0; i<RARRAY_LEN(ary); i++) {
        const VALUE e = rb_ary_elt(ary, i);
        const VALUE elt = block_given ? rb_yield_force_blockarg(e) : e;
        const VALUE key_value_pair = rb_check_array_type(elt);
        if (NIL_P(key_value_pair)) {
            rb_raise(rb_eTypeError, "wrong element type %"PRIsVALUE" at %ld (expected array)",
                     rb_obj_class(elt), i);
        }
        if (RARRAY_LEN(key_value_pair) != 2) {
            rb_raise(rb_eArgError, "wrong array length at %ld (expected 2, was %ld)",
                i, RARRAY_LEN(key_value_pair));
        }
        rb_hash_aset(hash, RARRAY_AREF(key_value_pair, 0), RARRAY_AREF(key_value_pair, 1));
    }
    return hash;
}

#transposeObject

Transposes the rows and columns in an Array of Arrays; the nested Arrays must all be the same size:

a = [[:a0, :a1], [:b0, :b1], [:c0, :c1]]
a.transpose # => [[:a0, :b0, :c0], [:a1, :b1, :c1]]


4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
# File 'array.c', line 4491

static VALUE
rb_ary_transpose(VALUE ary)
{
    long elen = -1, alen, i, j;
    VALUE tmp, result = 0;

    alen = RARRAY_LEN(ary);
    if (alen == 0) return rb_ary_dup(ary);
    for (i=0; i<alen; i++) {
        tmp = to_ary(rb_ary_elt(ary, i));
        if (elen < 0) {		/* first element */
            elen = RARRAY_LEN(tmp);
            result = rb_ary_new2(elen);
            for (j=0; j<elen; j++) {
                rb_ary_store(result, j, rb_ary_new2(alen));
            }
        }
        else if (elen != RARRAY_LEN(tmp)) {
            rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
                     RARRAY_LEN(tmp), elen);
        }
        for (j=0; j<elen; j++) {
            rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
        }
    }
    return result;
}

#union(*other_arrays) ⇒ Object

Returns a new Array that is the union of self and all given Arrays other_arrays; duplicates are removed; order is preserved; items are compared using eql?:

[0, 1, 2, 3].union([4, 5], [6, 7]) # => [0, 1, 2, 3, 4, 5, 6, 7]
[0, 1, 1].union([2, 1], [3, 1]) # => [0, 1, 2, 3]
[0, 1, 2, 3].union([3, 2], [1, 0]) # => [0, 1, 2, 3]

Returns a copy of self if no arguments given.

Related: Array#|.



5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
# File 'array.c', line 5634

static VALUE
rb_ary_union_multi(int argc, VALUE *argv, VALUE ary)
{
    int i;
    long sum;
    VALUE hash;

    sum = RARRAY_LEN(ary);
    for (i = 0; i < argc; i++) {
        argv[i] = to_ary(argv[i]);
        sum += RARRAY_LEN(argv[i]);
    }

    if (sum <= SMALL_ARRAY_LEN) {
        VALUE ary_union = rb_ary_new();

        rb_ary_union(ary_union, ary);
        for (i = 0; i < argc; i++) rb_ary_union(ary_union, argv[i]);

        return ary_union;
    }

    hash = ary_make_hash(ary);
    for (i = 0; i < argc; i++) rb_ary_union_hash(hash, argv[i]);

    return rb_hash_values(hash);
}

#uniqObject #uniq {|element| ... } ⇒ Object

Returns a new Array containing those elements from self that are not duplicates, the first occurrence always being retained.

With no block given, identifies and omits duplicates using method eql? to compare:

a = [0, 0, 1, 1, 2, 2]
a.uniq # => [0, 1, 2]

With a block given, calls the block for each element; identifies (using method eql?) and omits duplicate values, that is, those elements for which the block returns the same value:

a = ['a', 'aa', 'aaa', 'b', 'bb', 'bbb']
a.uniq {|element| element.size } # => ["a", "aa", "aaa"]

Overloads:

  • #uniq {|element| ... } ⇒ Object

    Yields:

    • (element)


6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
# File 'array.c', line 6176

static VALUE
rb_ary_uniq(VALUE ary)
{
    VALUE hash, uniq;

    if (RARRAY_LEN(ary) <= 1) {
        hash = 0;
        uniq = rb_ary_dup(ary);
    }
    else if (rb_block_given_p()) {
        hash = ary_make_hash_by(ary);
        uniq = rb_hash_values(hash);
    }
    else {
        hash = ary_make_hash(ary);
        uniq = rb_hash_values(hash);
    }

    return uniq;
}

#uniq!self? #uniq! {|element| ... } ⇒ self?

Removes duplicate elements from self, the first occurrence always being retained; returns self if any elements removed, nil otherwise.

With no block given, identifies and removes elements using method eql? to compare.

Returns self if any elements removed:

a = [0, 0, 1, 1, 2, 2]
a.uniq! # => [0, 1, 2]

Returns nil if no elements removed.

With a block given, calls the block for each element; identifies (using method eql?) and removes elements for which the block returns duplicate values.

Returns self if any elements removed:

a = ['a', 'aa', 'aaa', 'b', 'bb', 'bbb']
a.uniq! {|element| element.size } # => ['a', 'aa', 'aaa']

Returns nil if no elements removed.

Overloads:

  • #uniq!self?

    Returns:

    • (self, nil)
  • #uniq! {|element| ... } ⇒ self?

    Yields:

    • (element)

    Returns:

    • (self, nil)


6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
# File 'array.c', line 6123

static VALUE
rb_ary_uniq_bang(VALUE ary)
{
    VALUE hash;
    long hash_size;

    rb_ary_modify_check(ary);
    if (RARRAY_LEN(ary) <= 1)
        return Qnil;
    if (rb_block_given_p())
        hash = ary_make_hash_by(ary);
    else
        hash = ary_make_hash(ary);

    hash_size = RHASH_SIZE(hash);
    if (RARRAY_LEN(ary) == hash_size) {
        return Qnil;
    }
    rb_ary_modify_check(ary);
    ARY_SET_LEN(ary, 0);
    if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
        rb_ary_unshare(ary);
        FL_SET_EMBED(ary);
    }
    ary_resize_capa(ary, hash_size);
    rb_hash_foreach(hash, push_value, ary);

    return ary;
}

#unshift(*objects) ⇒ self Also known as: prepend

Prepends the given objects to self:

a = [:foo, 'bar', 2]
a.unshift(:bam, :bat) # => [:bam, :bat, :foo, "bar", 2]

Related: #push, #pop, #shift.

Returns:

  • (self)


1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
# File 'array.c', line 1651

VALUE
rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
{
    long len = RARRAY_LEN(ary);
    VALUE target_ary;

    if (argc == 0) {
        rb_ary_modify_check(ary);
        return ary;
    }

    target_ary = ary_ensure_room_for_unshift(ary, argc);
    ary_memcpy0(ary, 0, argc, argv, target_ary);
    ARY_SET_LEN(ary, len + argc);
    return ary;
}

#values_at(*indexes) ⇒ Object

Returns a new Array whose elements are the elements of self at the given Integer or Range indexes.

For each positive index, returns the element at offset index:

a = [:foo, 'bar', 2]
a.values_at(0, 2) # => [:foo, 2]
a.values_at(0..1) # => [:foo, "bar"]

The given indexes may be in any order, and may repeat:

a = [:foo, 'bar', 2]
a.values_at(2, 0, 1, 0, 2) # => [2, :foo, "bar", :foo, 2]
a.values_at(1, 0..2) # => ["bar", :foo, "bar", 2]

Assigns nil for an index that is too large:

a = [:foo, 'bar', 2]
a.values_at(0, 3, 1, 3) # => [:foo, nil, "bar", nil]

Returns a new empty Array if no arguments given.

For each negative index, counts backward from the end of the array:

a = [:foo, 'bar', 2]
a.values_at(-1, -3) # => [2, :foo]

Assigns nil for an index that is too small:

a = [:foo, 'bar', 2]
a.values_at(0, -5, 1, -6, 2) # => [:foo, nil, "bar", nil, 2]

The given indexes may have a mixture of signs:

a = [:foo, 'bar', 2]
a.values_at(0, -2, 1, -1) # => [:foo, "bar", "bar", 2]


3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
# File 'array.c', line 3768

static VALUE
rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
{
    long i, olen = RARRAY_LEN(ary);
    VALUE result = rb_ary_new_capa(argc);
    for (i = 0; i < argc; ++i) {
        append_values_at_single(result, ary, olen, argv[i]);
    }
    RB_GC_GUARD(ary);
    return result;
}

#zip(*other_arrays) ⇒ Object #zip(*other_arrays) {|other_array| ... } ⇒ nil

When no block given, returns a new Array new_array of size self.size whose elements are Arrays.

Each nested array new_array[n] is of size other_arrays.size+1, and contains:

  • The nth element of self.

  • The nth element of each of the other_arrays.

If all other_arrays and self are the same size:

a = [:a0, :a1, :a2, :a3]
b = [:b0, :b1, :b2, :b3]
c = [:c0, :c1, :c2, :c3]
d = a.zip(b, c)
d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]

If any array in other_arrays is smaller than self, fills to self.size with nil:

a = [:a0, :a1, :a2, :a3]
b = [:b0, :b1, :b2]
c = [:c0, :c1]
d = a.zip(b, c)
d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, nil], [:a3, nil, nil]]

If any array in other_arrays is larger than self, its trailing elements are ignored:

a = [:a0, :a1, :a2, :a3]
b = [:b0, :b1, :b2, :b3, :b4]
c = [:c0, :c1, :c2, :c3, :c4, :c5]
d = a.zip(b, c)
d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]

When a block is given, calls the block with each of the sub-arrays (formed as above); returns nil:

a = [:a0, :a1, :a2, :a3]
b = [:b0, :b1, :b2, :b3]
c = [:c0, :c1, :c2, :c3]
a.zip(b, c) {|sub_array| p sub_array} # => nil

Output:

[:a0, :b0, :c0]
[:a1, :b1, :c1]
[:a2, :b2, :c2]
[:a3, :b3, :c3]

Overloads:

  • #zip(*other_arrays) {|other_array| ... } ⇒ nil

    Yields:

    • (other_array)

    Returns:

    • (nil)


4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
# File 'array.c', line 4421

static VALUE
rb_ary_zip(int argc, VALUE *argv, VALUE ary)
{
    int i, j;
    long len = RARRAY_LEN(ary);
    VALUE result = Qnil;

    for (i=0; i<argc; i++) {
        argv[i] = take_items(argv[i], len);
    }

    if (rb_block_given_p()) {
        int arity = rb_block_arity();

        if (arity > 1) {
            VALUE work, *tmp;

            tmp = ALLOCV_N(VALUE, work, argc+1);

            for (i=0; i<RARRAY_LEN(ary); i++) {
                tmp[0] = RARRAY_AREF(ary, i);
                for (j=0; j<argc; j++) {
                    tmp[j+1] = rb_ary_elt(argv[j], i);
                }
                rb_yield_values2(argc+1, tmp);
            }

            if (work) ALLOCV_END(work);
        }
        else {
            for (i=0; i<RARRAY_LEN(ary); i++) {
                VALUE tmp = rb_ary_new2(argc+1);

                rb_ary_push(tmp, RARRAY_AREF(ary, i));
                for (j=0; j<argc; j++) {
                    rb_ary_push(tmp, rb_ary_elt(argv[j], i));
                }
                rb_yield(tmp);
            }
        }
    }
    else {
        result = rb_ary_new_capa(len);

        for (i=0; i<len; i++) {
            VALUE tmp = rb_ary_new_capa(argc+1);

            rb_ary_push(tmp, RARRAY_AREF(ary, i));
            for (j=0; j<argc; j++) {
                rb_ary_push(tmp, rb_ary_elt(argv[j], i));
            }
            rb_ary_push(result, tmp);
        }
    }

    return result;
}

#|(other_array) ⇒ Object

Returns the union of array and Array other_array; duplicates are removed; order is preserved; items are compared using eql?:

[0, 1] | [2, 3] # => [0, 1, 2, 3]
[0, 1, 1] | [2, 2, 3] # => [0, 1, 2, 3]
[0, 1, 2] | [3, 2, 1, 0] # => [0, 1, 2, 3]

Related: Array#union.



5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
# File 'array.c', line 5599

static VALUE
rb_ary_or(VALUE ary1, VALUE ary2)
{
    VALUE hash;

    ary2 = to_ary(ary2);
    if (RARRAY_LEN(ary1) + RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
        VALUE ary3 = rb_ary_new();
        rb_ary_union(ary3, ary1);
        rb_ary_union(ary3, ary2);
        return ary3;
    }

    hash = ary_make_hash(ary1);
    rb_ary_union_hash(hash, ary2);

    return rb_hash_values(hash);
}