Class: Rational
Overview
A rational number can be represented as a pair of integer numbers: a/b (b>0), where a is the numerator and b is the denominator. Integer a equals rational a/1 mathematically.
You can create a Rational object explicitly with:
You can convert certain objects to Rationals with:
-
Method #Rational.
Examples
Rational(1) #=> (1/1)
Rational(2, 3) #=> (2/3)
Rational(4, -6) #=> (-2/3) # Reduced.
3.to_r #=> (3/1)
2/3r #=> (2/3)
You can also create rational objects from floating-point numbers or strings.
Rational(0.3) #=> (5404319552844595/18014398509481984)
Rational('0.3') #=> (3/10)
Rational('2/3') #=> (2/3)
0.3.to_r #=> (5404319552844595/18014398509481984)
'0.3'.to_r #=> (3/10)
'2/3'.to_r #=> (2/3)
0.3.rationalize #=> (3/10)
A rational object is an exact number, which helps you to write programs without any rounding errors.
10.times.inject(0) {|t| t + 0.1 } #=> 0.9999999999999999
10.times.inject(0) {|t| t + Rational('0.1') } #=> (1/1)
However, when an expression includes an inexact component (numerical value or operation), it will produce an inexact result.
Rational(10) / 3 #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335
Rational(-8) ** Rational(1, 3)
#=> (1.0000000000000002+1.7320508075688772i)
Defined Under Namespace
Classes: compatible
Instance Method Summary collapse
-
#*(numeric) ⇒ Numeric
Performs multiplication.
- #** ⇒ Object
-
#+(numeric) ⇒ Numeric
Performs addition.
-
#-(numeric) ⇒ Numeric
Performs subtraction.
-
#- ⇒ Object
Negates
rat. -
#/(other) ⇒ Object
Performs division.
-
#<=>(numeric) ⇒ -1, ...
Returns -1, 0, or +1 depending on whether
rationalis less than, equal to, or greater thannumeric. -
#==(object) ⇒ Boolean
Returns
trueifratequalsobjectnumerically. -
#abs ⇒ Object
Returns the absolute value of
rat. -
#ceil([ndigits]) ⇒ Integer
Returns the smallest number greater than or equal to
ratwith a precision ofndigitsdecimal digits (default: 0). -
#coerce(other) ⇒ Object
:nodoc:.
-
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#fdiv(numeric) ⇒ Float
Performs division and returns the value as a Float.
-
#floor([ndigits]) ⇒ Integer
Returns the largest number less than or equal to
ratwith a precision ofndigitsdecimal digits (default: 0). - #hash ⇒ Object
-
#inspect ⇒ String
Returns the value as a string for inspection.
-
#magnitude ⇒ Object
Returns the absolute value of
rat. -
#marshal_dump ⇒ Object
private
:nodoc:.
-
#negative? ⇒ Boolean
Returns
trueifratis less than 0. -
#numerator ⇒ Integer
Returns the numerator.
-
#positive? ⇒ Boolean
Returns
trueifratis greater than 0. -
#quo(other) ⇒ Object
Performs division.
-
#rationalize(*args) ⇒ Object
Returns a simpler approximation of the value if the optional argument
epsis given (rat-|eps| <= result <= rat+|eps|), self otherwise. -
#round([ndigits][, half: mode]) ⇒ Integer
Returns
ratrounded to the nearest value with a precision ofndigitsdecimal digits (default: 0). -
#to_f ⇒ Float
Returns the value as a Float.
-
#to_i ⇒ Integer
Returns the truncated value as an integer.
-
#to_r ⇒ self
Returns self.
-
#to_s ⇒ String
Returns the value as a string.
-
#truncate([ndigits]) ⇒ Integer
Returns
rattruncated (toward zero) to a precision ofndigitsdecimal digits (default: 0).
Methods inherited from Numeric
#%, #+@, #abs2, #angle, #arg, #clone, #div, #divmod, #dup, #eql?, #i, #modulo, #nonzero?, #phase, #polar, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c, #to_int, #zero?
Methods included from Comparable
#<, #<=, #>, #>=, #between?, #clamp
Instance Method Details
#*(numeric) ⇒ Numeric
Performs multiplication.
Rational(2, 3) * Rational(2, 3) #=> (4/9)
Rational(900) * Rational(1) #=> (900/1)
Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
Rational(9, 8) * 4 #=> (9/2)
Rational(20, 9) * 9.8 #=> 21.77777777777778
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 |
# File 'rational.c', line 860 VALUE rb_rational_mul(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { { get_dat1(self); return f_muldiv(self, dat->num, dat->den, other, ONE, '*'); } } else if (RB_FLOAT_TYPE_P(other)) { return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other)); } else if (RB_TYPE_P(other, T_RATIONAL)) { { get_dat2(self, other); return f_muldiv(self, adat->num, adat->den, bdat->num, bdat->den, '*'); } } else { return rb_num_coerce_bin(self, other, '*'); } } |
#** ⇒ Object
#+(numeric) ⇒ Numeric
Performs addition.
Rational(2, 3) + Rational(2, 3) #=> (4/3)
Rational(900) + Rational(1) #=> (901/1)
Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
Rational(9, 8) + 4 #=> (41/8)
Rational(20, 9) + 9.8 #=> 12.022222222222222
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
# File 'rational.c', line 723 VALUE rb_rational_plus(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { { get_dat1(self); return f_rational_new_no_reduce2(CLASS_OF(self), rb_int_plus(dat->num, rb_int_mul(other, dat->den)), dat->den); } } else if (RB_FLOAT_TYPE_P(other)) { return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other)); } else if (RB_TYPE_P(other, T_RATIONAL)) { { get_dat2(self, other); return f_addsub(self, adat->num, adat->den, bdat->num, bdat->den, '+'); } } else { return rb_num_coerce_bin(self, other, '+'); } } |
#-(numeric) ⇒ Numeric
Performs subtraction.
Rational(2, 3) - Rational(2, 3) #=> (0/1)
Rational(900) - Rational(1) #=> (899/1)
Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
Rational(9, 8) - 4 #=> (-23/8)
Rational(20, 9) - 9.8 #=> -7.577777777777778
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 |
# File 'rational.c', line 764 VALUE rb_rational_minus(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { { get_dat1(self); return f_rational_new_no_reduce2(CLASS_OF(self), rb_int_minus(dat->num, rb_int_mul(other, dat->den)), dat->den); } } else if (RB_FLOAT_TYPE_P(other)) { return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other)); } else if (RB_TYPE_P(other, T_RATIONAL)) { { get_dat2(self, other); return f_addsub(self, adat->num, adat->den, bdat->num, bdat->den, '-'); } } else { return rb_num_coerce_bin(self, other, '-'); } } |
#- ⇒ Object
Negates rat.
610 611 612 613 614 615 616 617 |
# File 'rational.c', line 610 VALUE rb_rational_uminus(VALUE self) { const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0); get_dat1(self); (void)unused; return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den); } |
#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric
Performs division.
Rational(2, 3) / Rational(2, 3) #=> (1/1)
Rational(900) / Rational(1) #=> (900/1)
Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
Rational(9, 8) / 4 #=> (9/32)
Rational(20, 9) / 9.8 #=> 0.22675736961451246
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 |
# File 'rational.c', line 902 VALUE rb_rational_div(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { if (f_zero_p(other)) rb_num_zerodiv(); { get_dat1(self); return f_muldiv(self, dat->num, dat->den, other, ONE, '/'); } } else if (RB_FLOAT_TYPE_P(other)) { VALUE v = nurat_to_f(self); return rb_flo_div_flo(v, other); } else if (RB_TYPE_P(other, T_RATIONAL)) { if (f_zero_p(other)) rb_num_zerodiv(); { get_dat2(self, other); if (f_one_p(self)) return f_rational_new_no_reduce2(CLASS_OF(self), bdat->den, bdat->num); return f_muldiv(self, adat->num, adat->den, bdat->num, bdat->den, '/'); } } else { return rb_num_coerce_bin(self, other, '/'); } } |
#<=>(numeric) ⇒ -1, ...
Returns -1, 0, or +1 depending on whether rational is less than, equal to, or greater than numeric.
nil is returned if the two values are incomparable.
Rational(2, 3) <=> Rational(2, 3) #=> 0
Rational(5) <=> 5 #=> 0
Rational(2, 3) <=> Rational(1, 3) #=> 1
Rational(1, 3) <=> 1 #=> -1
Rational(1, 3) <=> 0.3 #=> 1
Rational(1, 3) <=> "0.3" #=> nil
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 |
# File 'rational.c', line 1074 VALUE rb_rational_cmp(VALUE self, VALUE other) { switch (TYPE(other)) { case T_FIXNUM: case T_BIGNUM: { get_dat1(self); if (dat->den == LONG2FIX(1)) return rb_int_cmp(dat->num, other); /* c14n */ other = f_rational_new_bang1(CLASS_OF(self), other); /* FALLTHROUGH */ } case T_RATIONAL: { VALUE num1, num2; get_dat2(self, other); if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) && FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) { num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den)); num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den)); } else { num1 = rb_int_mul(adat->num, bdat->den); num2 = rb_int_mul(bdat->num, adat->den); } return rb_int_cmp(rb_int_minus(num1, num2), ZERO); } case T_FLOAT: return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other)); default: return rb_num_coerce_cmp(self, other, idCmp); } } |
#==(object) ⇒ Boolean
Returns true if rat equals object numerically.
Rational(2, 3) == Rational(2, 3) #=> true
Rational(5) == 5 #=> true
Rational(0) == 0.0 #=> true
Rational('1/3') == 0.33 #=> false
Rational('1/2') == '1/2' #=> false
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 |
# File 'rational.c', line 1127 static VALUE nurat_eqeq_p(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { get_dat1(self); if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) { if (INT_ZERO_P(dat->num) && INT_ZERO_P(other)) return Qtrue; if (!FIXNUM_P(dat->den)) return Qfalse; if (FIX2LONG(dat->den) != 1) return Qfalse; return rb_int_equal(dat->num, other); } else { const double d = nurat_to_double(self); return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other)))); } } else if (RB_FLOAT_TYPE_P(other)) { const double d = nurat_to_double(self); return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other)))); } else if (RB_TYPE_P(other, T_RATIONAL)) { { get_dat2(self, other); if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num)) return Qtrue; return RBOOL(rb_int_equal(adat->num, bdat->num) && rb_int_equal(adat->den, bdat->den)); } } else { return rb_equal(other, self); } } |
#abs ⇒ Object #magnitude ⇒ Object
Returns the absolute value of rat.
(1/2r).abs #=> (1/2)
(-1/2r).abs #=> (1/2)
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 |
# File 'rational.c', line 1238 VALUE rb_rational_abs(VALUE self) { get_dat1(self); if (INT_NEGATIVE_P(dat->num)) { VALUE num = rb_int_abs(dat->num); return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den); } return self; } |
#ceil([ndigits]) ⇒ Integer
Returns the smallest number greater than or equal to rat with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns a rational when ndigits is positive, otherwise returns an integer.
Rational(3).ceil #=> 3
Rational(2, 3).ceil #=> 1
Rational(-3, 2).ceil #=> -1
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').ceil(+1).to_f #=> -123.4
Rational('-123.456').ceil(-1) #=> -120
1464 1465 1466 1467 1468 |
# File 'rational.c', line 1464 static VALUE nurat_ceil_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_ceil); } |
#coerce(other) ⇒ Object
:nodoc:
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 |
# File 'rational.c', line 1169 static VALUE nurat_coerce(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self); } else if (RB_FLOAT_TYPE_P(other)) { return rb_assoc_new(other, nurat_to_f(self)); } else if (RB_TYPE_P(other, T_RATIONAL)) { return rb_assoc_new(other, self); } else if (RB_TYPE_P(other, T_COMPLEX)) { if (!k_exact_zero_p(RCOMPLEX(other)->imag)) return rb_assoc_new(other, rb_Complex(self, INT2FIX(0))); other = RCOMPLEX(other)->real; if (RB_FLOAT_TYPE_P(other)) { other = float_to_r(other); RBASIC_SET_CLASS(other, CLASS_OF(self)); } else { other = f_rational_new_bang1(CLASS_OF(self), other); } return rb_assoc_new(other, self); } rb_raise(rb_eTypeError, "%s can't be coerced into %s", rb_obj_classname(other), rb_obj_classname(self)); return Qnil; } |
#denominator ⇒ Integer
Returns the denominator (always positive).
Rational(7).denominator #=> 1
Rational(7, 1).denominator #=> 1
Rational(9, -4).denominator #=> 4
Rational(-2, -10).denominator #=> 5
597 598 599 600 601 602 |
# File 'rational.c', line 597 static VALUE nurat_denominator(VALUE self) { get_dat1(self); return dat->den; } |
#fdiv(numeric) ⇒ Float
Performs division and returns the value as a Float.
Rational(2, 3).fdiv(1) #=> 0.6666666666666666
Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
Rational(2).fdiv(3) #=> 0.6666666666666666
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 |
# File 'rational.c', line 950 static VALUE nurat_fdiv(VALUE self, VALUE other) { VALUE div; if (f_zero_p(other)) return rb_rational_div(self, rb_float_new(0.0)); if (FIXNUM_P(other) && other == LONG2FIX(1)) return nurat_to_f(self); div = rb_rational_div(self, other); if (RB_TYPE_P(div, T_RATIONAL)) return nurat_to_f(div); if (RB_FLOAT_TYPE_P(div)) return div; return rb_funcall(div, idTo_f, 0); } |
#floor([ndigits]) ⇒ Integer
Returns the largest number less than or equal to rat with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns a rational when ndigits is positive, otherwise returns an integer.
Rational(3).floor #=> 3
Rational(2, 3).floor #=> 0
Rational(-3, 2).floor #=> -2
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').floor(+1).to_f #=> -123.5
Rational('-123.456').floor(-1) #=> -130
1434 1435 1436 1437 1438 |
# File 'rational.c', line 1434 static VALUE nurat_floor_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_floor); } |
#hash ⇒ Object
1771 1772 1773 1774 1775 |
# File 'rational.c', line 1771 static VALUE nurat_hash(VALUE self) { return ST2FIX(rb_rational_hash(self)); } |
#inspect ⇒ String
Returns the value as a string for inspection.
Rational(2).inspect #=> "(2/1)"
Rational(-8, 6).inspect #=> "(-4/3)"
Rational('1/2').inspect #=> "(1/2)"
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 |
# File 'rational.c', line 1817 static VALUE nurat_inspect(VALUE self) { VALUE s; s = rb_usascii_str_new2("("); rb_str_concat(s, f_format(self, f_inspect)); rb_str_cat2(s, ")"); return s; } |
#abs ⇒ Object #magnitude ⇒ Object
Returns the absolute value of rat.
(1/2r).abs #=> (1/2)
(-1/2r).abs #=> (1/2)
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 |
# File 'rational.c', line 1238 VALUE rb_rational_abs(VALUE self) { get_dat1(self); if (INT_NEGATIVE_P(dat->num)) { VALUE num = rb_int_abs(dat->num); return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den); } return self; } |
#marshal_dump ⇒ Object (private)
:nodoc:
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 |
# File 'rational.c', line 1856 static VALUE nurat_marshal_dump(VALUE self) { VALUE a; get_dat1(self); a = rb_assoc_new(dat->num, dat->den); rb_copy_generic_ivar(a, self); return a; } |
#negative? ⇒ Boolean
Returns true if rat is less than 0.
1219 1220 1221 1222 1223 1224 |
# File 'rational.c', line 1219 static VALUE nurat_negative_p(VALUE self) { get_dat1(self); return RBOOL(INT_NEGATIVE_P(dat->num)); } |
#numerator ⇒ Integer
Returns the numerator.
Rational(7).numerator #=> 7
Rational(7, 1).numerator #=> 7
Rational(9, -4).numerator #=> -9
Rational(-2, -10).numerator #=> 1
579 580 581 582 583 584 |
# File 'rational.c', line 579 static VALUE nurat_numerator(VALUE self) { get_dat1(self); return dat->num; } |
#positive? ⇒ Boolean
Returns true if rat is greater than 0.
1206 1207 1208 1209 1210 1211 |
# File 'rational.c', line 1206 static VALUE nurat_positive_p(VALUE self) { get_dat1(self); return RBOOL(INT_POSITIVE_P(dat->num)); } |
#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric
Performs division.
Rational(2, 3) / Rational(2, 3) #=> (1/1)
Rational(900) / Rational(1) #=> (900/1)
Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
Rational(9, 8) / 4 #=> (9/32)
Rational(20, 9) / 9.8 #=> 0.22675736961451246
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 |
# File 'rational.c', line 902 VALUE rb_rational_div(VALUE self, VALUE other) { if (RB_INTEGER_TYPE_P(other)) { if (f_zero_p(other)) rb_num_zerodiv(); { get_dat1(self); return f_muldiv(self, dat->num, dat->den, other, ONE, '/'); } } else if (RB_FLOAT_TYPE_P(other)) { VALUE v = nurat_to_f(self); return rb_flo_div_flo(v, other); } else if (RB_TYPE_P(other, T_RATIONAL)) { if (f_zero_p(other)) rb_num_zerodiv(); { get_dat2(self, other); if (f_one_p(self)) return f_rational_new_no_reduce2(CLASS_OF(self), bdat->den, bdat->num); return f_muldiv(self, adat->num, adat->den, bdat->num, bdat->den, '/'); } } else { return rb_num_coerce_bin(self, other, '/'); } } |
#rationalize ⇒ self #rationalize(eps) ⇒ Object
Returns a simpler approximation of the value if the optional argument eps is given (rat-|eps| <= result <= rat+|eps|), self otherwise.
r = Rational(5033165, 16777216)
r.rationalize #=> (5033165/16777216)
r.rationalize(Rational('0.01')) #=> (3/10)
r.rationalize(Rational('0.1')) #=> (1/3)
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 |
# File 'rational.c', line 1724 static VALUE nurat_rationalize(int argc, VALUE *argv, VALUE self) { VALUE e, a, b, p, q; VALUE rat = self; get_dat1(self); if (rb_check_arity(argc, 0, 1) == 0) return self; e = f_abs(argv[0]); if (INT_NEGATIVE_P(dat->num)) { rat = f_rational_new2(RBASIC_CLASS(self), rb_int_uminus(dat->num), dat->den); } a = FIXNUM_ZERO_P(e) ? rat : rb_rational_minus(rat, e); b = FIXNUM_ZERO_P(e) ? rat : rb_rational_plus(rat, e); if (f_eqeq_p(a, b)) return self; nurat_rationalize_internal(a, b, &p, &q); if (rat != self) { RATIONAL_SET_NUM(rat, rb_int_uminus(p)); RATIONAL_SET_DEN(rat, q); return rat; } return f_rational_new2(CLASS_OF(self), p, q); } |
#round([ndigits][, half: mode]) ⇒ Integer
Returns rat rounded to the nearest value with a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns a rational when ndigits is positive, otherwise returns an integer.
Rational(3).round #=> 3
Rational(2, 3).round #=> 1
Rational(-3, 2).round #=> -2
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').round(+1).to_f #=> -123.5
Rational('-123.456').round(-1) #=> -120
The optional half keyword argument is available similar to Float#round.
Rational(25, 100).round(1, half: :up) #=> (3/10)
Rational(25, 100).round(1, half: :down) #=> (1/5)
Rational(25, 100).round(1, half: :even) #=> (1/5)
Rational(35, 100).round(1, half: :up) #=> (2/5)
Rational(35, 100).round(1, half: :down) #=> (3/10)
Rational(35, 100).round(1, half: :even) #=> (2/5)
Rational(-25, 100).round(1, half: :up) #=> (-3/10)
Rational(-25, 100).round(1, half: :down) #=> (-1/5)
Rational(-25, 100).round(1, half: :even) #=> (-1/5)
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 |
# File 'rational.c', line 1537 static VALUE nurat_round_n(int argc, VALUE *argv, VALUE self) { VALUE opt; enum ruby_num_rounding_mode mode = ( argc = rb_scan_args(argc, argv, "*:", NULL, &opt), rb_num_get_rounding_option(opt)); VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round); return f_round_common(argc, argv, self, round_func); } |
#to_f ⇒ Float
Returns the value as a Float.
Rational(2).to_f #=> 2.0
Rational(9, 4).to_f #=> 2.25
Rational(-3, 4).to_f #=> -0.75
Rational(20, 3).to_f #=> 6.666666666666667
1575 1576 1577 1578 1579 |
# File 'rational.c', line 1575 static VALUE nurat_to_f(VALUE self) { return DBL2NUM(nurat_to_double(self)); } |
#to_i ⇒ Integer
Returns the truncated value as an integer.
Equivalent to Rational#truncate.
Rational(2, 3).to_i #=> 0
Rational(3).to_i #=> 3
Rational(300.6).to_i #=> 300
Rational(98, 71).to_i #=> 1
Rational(-31, 2).to_i #=> -15
1277 1278 1279 1280 1281 1282 1283 1284 |
# File 'rational.c', line 1277 static VALUE nurat_truncate(VALUE self) { get_dat1(self); if (INT_NEGATIVE_P(dat->num)) return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den)); return rb_int_idiv(dat->num, dat->den); } |
#to_r ⇒ self
Returns self.
Rational(2).to_r #=> (2/1)
Rational(-8, 6).to_r #=> (-4/3)
1590 1591 1592 1593 1594 |
# File 'rational.c', line 1590 static VALUE nurat_to_r(VALUE self) { return self; } |
#to_s ⇒ String
Returns the value as a string.
Rational(2).to_s #=> "2/1"
Rational(-8, 6).to_s #=> "-4/3"
Rational('1/2').to_s #=> "1/2"
1801 1802 1803 1804 1805 |
# File 'rational.c', line 1801 static VALUE nurat_to_s(VALUE self) { return f_format(self, f_to_s); } |
#truncate([ndigits]) ⇒ Integer
Returns rat truncated (toward zero) to a precision of ndigits decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.
Returns a rational when ndigits is positive, otherwise returns an integer.
Rational(3).truncate #=> 3
Rational(2, 3).truncate #=> 0
Rational(-3, 2).truncate #=> -1
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').truncate(+1).to_f #=> -123.4
Rational('-123.456').truncate(-1) #=> -120
1494 1495 1496 1497 1498 |
# File 'rational.c', line 1494 static VALUE nurat_truncate_n(int argc, VALUE *argv, VALUE self) { return f_round_common(argc, argv, self, nurat_truncate); } |