Class: Range

Inherits:
Object show all
Includes:
Enumerable
Defined in:
range.c

Overview

A Range object represents a collection of values that are between given begin and end values.

You can create an Range object explicitly with:

  • A range literal:

    # Ranges that use '..' to include the given end value.
    (1..4).to_a      # => [1, 2, 3, 4]
    ('a'..'d').to_a  # => ["a", "b", "c", "d"]
    # Ranges that use '...' to exclude the given end value.
    (1...4).to_a     # => [1, 2, 3]
    ('a'...'d').to_a # => ["a", "b", "c"]
    

A range may be created using method Range.new:

# Ranges that by default include the given end value.
Range.new(1, 4).to_a     # => [1, 2, 3, 4]
Range.new('a', 'd').to_a # => ["a", "b", "c", "d"]
# Ranges that use third argument +exclude_end+ to exclude the given end value.
Range.new(1, 4, true).to_a     # => [1, 2, 3]
Range.new('a', 'd', true).to_a # => ["a", "b", "c"]

Beginless Ranges

A beginless range has a definite end value, but a nil begin value. Such a range includes all values up to the end value.

r = (..4)               # => nil..4
r.begin                 # => nil
r.include?(-50)         # => true
r.include?(4)           # => true

r = (...4)              # => nil...4
r.include?(4)           # => false

Range.new(nil, 4)       # => nil..4
Range.new(nil, 4, true) # => nil...4

A beginless range may be used to slice an array:

a = [1, 2, 3, 4]
r = (..2) # => nil...2
a[r]      # => [1, 2]

Method each for a beginless range raises an exception.

Endless Ranges

An endless range has a definite begin value, but a nil end value. Such a range includes all values from the begin value.

r = (1..)         # => 1..
r.end             # => nil
r.include?(50)    # => true

Range.new(1, nil) # => 1..

The literal for an endless range may be written with either two dots or three. The range has the same elements, either way. But note that the two are not equal:

r0 = (1..)           # => 1..
r1 = (1...)          # => 1...
r0.begin == r1.begin # => true
r0.end == r1.end     # => true
r0 == r1             # => false

An endless range may be used to slice an array:

a = [1, 2, 3, 4]
r = (2..) # => 2..
a[r]      # => [3, 4]

Method each for an endless range calls the given block indefinitely:

a = []
r = (1..)
r.each do |i|
  a.push(i) if i.even?
  break if i > 10
end
a # => [2, 4, 6, 8, 10]

A range can be both beginless and endless. For literal beginless, endless ranges, at least the beginning or end of the range must be given as an explicit nil value. It is recommended to use an explicit nil beginning and implicit nil end, since that is what Ruby uses for Range#inspect:

(nil..)    # => (nil..)
(..nil)    # => (nil..)
(nil..nil) # => (nil..)

Ranges and Other Classes

An object may be put into a range if its class implements instance method <=>. Ruby core classes that do so include Array, Complex, File::Stat, Float, Integer, Kernel, Module, Numeric, Rational, String, Symbol, and Time.

Example:

t0 = Time.now         # => 2021-09-19 09:22:48.4854986 -0500
t1 = Time.now         # => 2021-09-19 09:22:56.0365079 -0500
t2 = Time.now         # => 2021-09-19 09:23:08.5263283 -0500
(t0..t2).include?(t1) # => true
(t0..t1).include?(t2) # => false

A range can be iterated over only if its elements implement instance method succ. Ruby core classes that do so include Integer, String, and Symbol (but not the other classes mentioned above).

Iterator methods include:

  • In Range itself: #each, #step, and #%

  • Included from module Enumerable: #each_entry, #each_with_index, #each_with_object, #each_slice, #each_cons, and #reverse_each.

Example:

a = []
(1..4).each {|i| a.push(i) }
a # => [1, 2, 3, 4]

Ranges and User-Defined Classes

A user-defined class that is to be used in a range must implement instance <=>; see Integer#<=>. To make iteration available, it must also implement instance method succ; see Integer#succ.

The class below implements both <=> and succ, and so can be used both to construct ranges and to iterate over them. Note that the Comparable module is included so the == method is defined in terms of <=>.

# Represent a string of 'X' characters.
class Xs
  include Comparable
  attr_accessor :length
  def initialize(n)
    @length = n
  end
  def succ
    Xs.new(@length + 1)
  end
  def <=>(other)
    @length <=> other.length
  end
  def to_s
    sprintf "%2d #{inspect}", @length
  end
  def inspect
    'X' * @length
  end
end

r = Xs.new(3)..Xs.new(6) #=> XXX..XXXXXX
r.to_a                   #=> [XXX, XXXX, XXXXX, XXXXXX]
r.include?(Xs.new(5))    #=> true
r.include?(Xs.new(7))    #=> false

What’s Here

First, what’s elsewhere. Class Range:

Here, class Range provides methods that are useful for:

Methods for Creating a Range

  • ::new: Returns a new range.

Methods for Querying

  • #begin: Returns the begin value given for self.

  • #bsearch: Returns an element from self selected by a binary search.

  • #count: Returns a count of elements in self.

  • #end: Returns the end value given for self.

  • #exclude_end?: Returns whether the end object is excluded.

  • #first: Returns the first elements of self.

  • #hash: Returns the integer hash code.

  • #last: Returns the last elements of self.

  • #max: Returns the maximum values in self.

  • #min: Returns the minimum values in self.

  • #minmax: Returns the minimum and maximum values in self.

  • #size: Returns the count of elements in self.

Methods for Comparing

  • #==: Returns whether a given object is equal to self (uses #==).

  • #===: Returns whether the given object is between the begin and end values.

  • #cover?: Returns whether a given object is within self.

  • #eql?: Returns whether a given object is equal to self (uses #eql?).

  • #include? (aliased as #member?): Returns whether a given object is an element of self.

Methods for Iterating

  • #%: Requires argument n; calls the block with each n-th element of self.

  • #each: Calls the block with each element of self.

  • #step: Takes optional argument n (defaults to 1); calls the block with each n-th element of self.

Methods for Converting

  • #inspect: Returns a string representation of self (uses #inspect).

  • #to_a (aliased as #entries): Returns elements of self in an array.

  • #to_s: Returns a string representation of self (uses #to_s).

Methods for Working with JSON

  • ::json_create: Returns a new Range object constructed from the given object.

  • #as_json: Returns a 2-element hash representing self.

  • #to_json: Returns a JSON string representing self.

To make these methods available:

require 'json/add/range'

Instance Method Summary collapse

Methods included from Enumerable

#all?, #any?, #chain, #chunk, #chunk_while, #collect, #collect_concat, #compact, #cycle, #detect, #drop, #drop_while, #each_cons, #each_entry, #each_slice, #each_with_index, #each_with_object, #filter, #filter_map, #find, #find_all, #find_index, #flat_map, #grep, #grep_v, #group_by, #inject, #lazy, #map, #max_by, #min_by, #minmax_by, #none?, #one?, #partition, #reduce, #reject, #select, #slice_after, #slice_before, #slice_when, #sort, #sort_by, #sum, #take, #take_while, #tally, #to_h, #uniq, #zip

Constructor Details

#newObject

Returns a new range based on the given objects begin and end. Optional argument exclude_end determines whether object end is included as the last object in the range:

Range.new(2, 5).to_a            # => [2, 3, 4, 5]
Range.new(2, 5, true).to_a      # => [2, 3, 4]
Range.new('a', 'd').to_a        # => ["a", "b", "c", "d"]
Range.new('a', 'd', true).to_a  # => ["a", "b", "c"]


100
101
102
103
104
105
106
107
108
109
# File 'range.c', line 100

static VALUE
range_initialize(int argc, VALUE *argv, VALUE range)
{
    VALUE beg, end, flags;

    rb_scan_args(argc, argv, "21", &beg, &end, &flags);
    range_modify(range);
    range_init(range, beg, end, RBOOL(RTEST(flags)));
    return Qnil;
}

Instance Method Details

#%(n) {|element| ... } ⇒ self #%(n) ⇒ Object

Iterates over the elements of self.

With a block given, calls the block with selected elements of the range; returns self:

a = []
(1..5).%(2) {|element| a.push(element) } # => 1..5
a # => [1, 3, 5]
a = []
('a'..'e').%(2) {|element| a.push(element) } # => "a".."e"
a # => ["a", "c", "e"]

With no block given, returns an enumerator, which will be of class Enumerator::ArithmeticSequence if self is numeric; otherwise of class Enumerator:

e = (1..5) % 2 # => ((1..5).%(2))
e.class        # => Enumerator::ArithmeticSequence
('a'..'e') % 2 # =>  #<Enumerator: ...>

Related: Range#step.

Overloads:

  • #%(n) {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)


572
573
574
575
576
# File 'range.c', line 572

static VALUE
range_percent_step(VALUE range, VALUE step)
{
    return range_step(1, &step, range);
}

#==(other) ⇒ Boolean

Returns true if and only if:

  • other is a range.

  • other.begin == self.begin.

  • other.end == self.end.

  • other.exclude_end? == self.exclude_end?.

Otherwise returns false.

r = (1..5)
r == (1..5)                # => true
r = Range.new(1, 5)
r == 'foo'                 # => false
r == (2..5)                # => false
r == (1..4)                # => false
r == (1...5)               # => false
r == Range.new(1, 5, true) # => false

Note that even with the same argument, the return values of #== and #eql? can differ:

(1..2) == (1..2.0)   # => true
(1..2).eql? (1..2.0) # => false

Related: Range#eql?.

Returns:

  • (Boolean)


182
183
184
185
186
187
188
189
190
191
# File 'range.c', line 182

static VALUE
range_eq(VALUE range, VALUE obj)
{
    if (range == obj)
        return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
        return Qfalse;

    return rb_exec_recursive_paired(recursive_equal, range, obj, obj);
}

#===(object) ⇒ Boolean

Returns true if object is between self.begin and self.end. false otherwise:

(1..4) === 2       # => true
(1..4) === 5       # => false
(1..4) === 'a'     # => false
(1..4) === 4       # => true
(1...4) === 4      # => false
('a'..'d') === 'c' # => true
('a'..'d') === 'e' # => false

A case statement uses method ===, and so:

case 79
when (1..50)
  "low"
when (51..75)
  "medium"
when (76..100)
  "high"
end # => "high"

case "2.6.5"
when ..."2.4"
  "EOL"
when "2.4"..."2.5"
  "maintenance"
when "2.5"..."3.0"
  "stable"
when "3.1"..
  "upcoming"
end # => "stable"

Returns:

  • (Boolean)


1888
1889
1890
1891
1892
# File 'range.c', line 1888

static VALUE
range_eqq(VALUE range, VALUE val)
{
    return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val);
}

#beginObject

Returns the object that defines the beginning of self.

(1..4).begin # => 1
(..2).begin  # => nil

Related: Range#first, Range#end.

Returns:



1177
1178
1179
1180
1181
# File 'range.c', line 1177

static VALUE
range_begin(VALUE range)
{
    return RANGE_BEG(range);
}

#bsearch {|obj| ... } ⇒ Object

Returns an element from self selected by a binary search.

See Binary Searching.

Yields:

  • (obj)


693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
# File 'range.c', line 693

static VALUE
range_bsearch(VALUE range)
{
    VALUE beg, end, satisfied = Qnil;
    int smaller;

    /* Implementation notes:
     * Floats are handled by mapping them to 64 bits integers.
     * Apart from sign issues, floats and their 64 bits integer have the
     * same order, assuming they are represented as exponent followed
     * by the mantissa. This is true with or without implicit bit.
     *
     * Finding the average of two ints needs to be careful about
     * potential overflow (since float to long can use 64 bits).
     *
     * The half-open interval (low, high] indicates where the target is located.
     * The loop continues until low and high are adjacent.
     *
     * -1/2 can be either 0 or -1 in C89. However, when low and high are not adjacent,
     * the rounding direction of mid = (low + high) / 2 does not affect the result of
     * the binary search.
     *
     * Note that -0.0 is mapped to the same int as 0.0 as we don't want
     * (-1...0.0).bsearch to yield -0.0.
     */

#define BSEARCH(conv, excl) \
    do { \
        RETURN_ENUMERATOR(range, 0, 0); \
        if (!(excl)) high++; \
        low--; \
        while (low + 1 < high) { \
            mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \
                : (low + high) / 2; \
            BSEARCH_CHECK(conv(mid)); \
            if (smaller) { \
                high = mid; \
            } \
            else { \
                low = mid; \
            } \
        } \
        return satisfied; \
    } while (0)

#define BSEARCH_FIXNUM(beg, end, excl) \
    do { \
        long low = FIX2LONG(beg); \
        long high = FIX2LONG(end); \
        long mid; \
        BSEARCH(INT2FIX, (excl)); \
    } while (0)

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && FIXNUM_P(end)) {
        BSEARCH_FIXNUM(beg, end, EXCL(range));
    }
#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T)
    else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) {
        int64_t low  = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg)));
        int64_t high = double_as_int64(NIL_P(end) ?  HUGE_VAL : RFLOAT_VALUE(rb_Float(end)));
        int64_t mid;
        BSEARCH(int64_as_double_to_num, EXCL(range));
    }
#endif
    else if (is_integer_p(beg) && is_integer_p(end)) {
        RETURN_ENUMERATOR(range, 0, 0);
        return bsearch_integer_range(beg, end, EXCL(range));
    }
    else if (is_integer_p(beg) && NIL_P(end)) {
        VALUE diff = LONG2FIX(1);
        RETURN_ENUMERATOR(range, 0, 0);
        while (1) {
            VALUE mid = rb_funcall(beg, '+', 1, diff);
            BSEARCH_CHECK(mid);
            if (smaller) {
                if (FIXNUM_P(beg) && FIXNUM_P(mid)) {
                    BSEARCH_FIXNUM(beg, mid, false);
                }
                else {
                    return bsearch_integer_range(beg, mid, false);
                }
            }
            diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
            beg = mid;
        }
    }
    else if (NIL_P(beg) && is_integer_p(end)) {
        VALUE diff = LONG2FIX(-1);
        RETURN_ENUMERATOR(range, 0, 0);
        while (1) {
            VALUE mid = rb_funcall(end, '+', 1, diff);
            BSEARCH_CHECK(mid);
            if (!smaller) {
                if (FIXNUM_P(mid) && FIXNUM_P(end)) {
                    BSEARCH_FIXNUM(mid, end, false);
                }
                else {
                    return bsearch_integer_range(mid, end, false);
                }
            }
            diff = rb_funcall(diff, '*', 1, LONG2FIX(2));
            end = mid;
        }
    }
    else {
        rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg));
    }
    return range;
}

#countInteger #count(object) ⇒ Integer #count {|element| ... } ⇒ Integer

Returns the count of elements, based on an argument or block criterion, if given.

With no argument and no block given, returns the number of elements:

(1..4).count      # => 4
(1...4).count     # => 3
('a'..'d').count  # => 4
('a'...'d').count # => 3
(1..).count       # => Infinity
(..4).count       # => Infinity

With argument object, returns the number of object found in self, which will usually be zero or one:

(1..4).count(2)   # => 1
(1..4).count(5)   # => 0
(1..4).count('a')  # => 0

With a block given, calls the block with each element; returns the number of elements for which the block returns a truthy value:

(1..4).count {|element| element < 3 } # => 2

Related: Range#size.

Overloads:



2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
# File 'range.c', line 2247

static VALUE
range_count(int argc, VALUE *argv, VALUE range)
{
    if (argc != 0) {
        /* It is odd for instance (1...).count(0) to return Infinity. Just let
         * it loop. */
        return rb_call_super(argc, argv);
    }
    else if (rb_block_given_p()) {
        /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return
         * Infinity. Just let it loop. */
        return rb_call_super(argc, argv);
    }

    VALUE beg = RANGE_BEG(range), end = RANGE_END(range);

    if (NIL_P(beg) || NIL_P(end)) {
        /* We are confident that the answer is Infinity. */
        return DBL2NUM(HUGE_VAL);
    }

    if (is_integer_p(beg)) {
        VALUE size = range_size(range);
        if (!NIL_P(size)) {
            return size;
        }
    }

    return rb_call_super(argc, argv);
}

#cover?(object) ⇒ Boolean #cover?(range) ⇒ Boolean

Returns true if the given argument is within self, false otherwise.

With non-range argument object, evaluates with <= and <.

For range self with included end value (#exclude_end? == false), evaluates thus:

self.begin <= object <= self.end

Examples:

r = (1..4)
r.cover?(1)     # => true
r.cover?(4)     # => true
r.cover?(0)     # => false
r.cover?(5)     # => false
r.cover?('foo') # => false

r = ('a'..'d')
r.cover?('a')     # => true
r.cover?('d')     # => true
r.cover?(' ')     # => false
r.cover?('e')     # => false
r.cover?(0)       # => false

For range r with excluded end value (#exclude_end? == true), evaluates thus:

r.begin <= object < r.end

Examples:

r = (1...4)
r.cover?(1)     # => true
r.cover?(3)     # => true
r.cover?(0)     # => false
r.cover?(4)     # => false
r.cover?('foo') # => false

r = ('a'...'d')
r.cover?('a')     # => true
r.cover?('c')     # => true
r.cover?(' ')     # => false
r.cover?('d')     # => false
r.cover?(0)       # => false

With range argument range, compares the first and last elements of self and range:

r = (1..4)
r.cover?(1..4)     # => true
r.cover?(0..4)     # => false
r.cover?(1..5)     # => false
r.cover?('a'..'d') # => false

r = (1...4)
r.cover?(1..3)     # => true
r.cover?(1..4)     # => false

If begin and end are numeric, #cover? behaves like #include?

(1..3).cover?(1.5) # => true
(1..3).include?(1.5) # => true

But when not numeric, the two methods may differ:

('a'..'d').cover?('cc')   # => true
('a'..'d').include?('cc') # => false

Returns false if either:

  • The begin value of self is larger than its end value.

  • An internal call to <=> returns nil; that is, the operands are not comparable.

Beginless ranges cover all values of the same type before the end, excluding the end for exclusive ranges. Beginless ranges cover ranges that end before the end of the beginless range, or at the end of the beginless range for inclusive ranges.

(..2).cover?(1)     # => true
(..2).cover?(2)     # => true
(..2).cover?(3)     # => false
(...2).cover?(2)    # => false
(..2).cover?("2")   # => false
(..2).cover?(..2)   # => true
(..2).cover?(...2)  # => true
(..2).cover?(.."2") # => false
(...2).cover?(..2)  # => false

Endless ranges cover all values of the same type after the beginning. Endless exclusive ranges do not cover endless inclusive ranges.

(2..).cover?(1)     # => false
(2..).cover?(3)     # => true
(2...).cover?(3)    # => true
(2..).cover?(2)     # => true
(2..).cover?("2")   # => false
(2..).cover?(2..)   # => true
(2..).cover?(2...)  # => true
(2..).cover?("2"..) # => false
(2...).cover?(2..)  # => false
(2...).cover?(3...) # => true
(2...).cover?(3..)  # => false
(3..).cover?(2..)   # => false

Ranges that are both beginless and endless cover all values and ranges, and return true for all arguments, with the exception that beginless and endless exclusive ranges do not cover endless inclusive ranges.

(nil...).cover?(Object.new) # => true
(nil...).cover?(nil...)     # => true
(nil..).cover?(nil...)      # => true
(nil...).cover?(nil..)      # => false
(nil...).cover?(1..)        # => false

Related: Range#include?.

Overloads:

  • #cover?(object) ⇒ Boolean

    Returns:

    • (Boolean)
  • #cover?(range) ⇒ Boolean

    Returns:

    • (Boolean)


2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
# File 'range.c', line 2106

static VALUE
range_cover(VALUE range, VALUE val)
{
    VALUE beg, end;

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (rb_obj_is_kind_of(val, rb_cRange)) {
        return RBOOL(r_cover_range_p(range, beg, end, val));
    }
    return r_cover_p(range, beg, end, val);
}

#each {|element| ... } ⇒ self #eachObject

With a block given, passes each element of self to the block:

a = []
(1..4).each {|element| a.push(element) } # => 1..4
a # => [1, 2, 3, 4]

Raises an exception unless self.first.respond_to?(:succ).

With no block given, returns an enumerator.

Overloads:

  • #each {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)


933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
# File 'range.c', line 933

static VALUE
range_each(VALUE range)
{
    VALUE beg, end;
    long i;

    RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);

    beg = RANGE_BEG(range);
    end = RANGE_END(range);

    if (FIXNUM_P(beg) && NIL_P(end)) {
        range_each_fixnum_endless(beg);
    }
    else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
        return range_each_fixnum_loop(beg, end, range);
    }
    else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) {
        if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */
            if (!FIXNUM_P(beg)) {
                if (RBIGNUM_NEGATIVE_P(beg)) {
                    do {
                        rb_yield(beg);
                    } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1))));
                    if (NIL_P(end)) range_each_fixnum_endless(beg);
                    if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range);
                }
                else {
                    if (NIL_P(end)) range_each_bignum_endless(beg);
                    if (FIXNUM_P(end)) return range;
                }
            }
            if (FIXNUM_P(beg)) {
                i = FIX2LONG(beg);
                do {
                    rb_yield(LONG2FIX(i));
                } while (POSFIXABLE(++i));
                beg = LONG2NUM(i);
            }
            ASSUME(!FIXNUM_P(beg));
            ASSUME(!SPECIAL_CONST_P(end));
        }
        if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) {
            if (EXCL(range)) {
                while (rb_big_cmp(beg, end) == INT2FIX(-1)) {
                    rb_yield(beg);
                    beg = rb_big_plus(beg, INT2FIX(1));
                }
            }
            else {
                VALUE c;
                while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
                    rb_yield(beg);
                    if (c == INT2FIX(0)) break;
                    beg = rb_big_plus(beg, INT2FIX(1));
                }
            }
        }
    }
    else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */
        beg = rb_sym2str(beg);
        if (NIL_P(end)) {
            rb_str_upto_endless_each(beg, sym_each_i, 0);
        }
        else {
            rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0);
        }
    }
    else {
        VALUE tmp = rb_check_string_type(beg);

        if (!NIL_P(tmp)) {
            if (!NIL_P(end)) {
                rb_str_upto_each(tmp, end, EXCL(range), each_i, 0);
            }
            else {
                rb_str_upto_endless_each(tmp, each_i, 0);
            }
        }
        else {
            if (!discrete_object_p(beg)) {
                rb_raise(rb_eTypeError, "can't iterate from %s",
                         rb_obj_classname(beg));
            }
            if (!NIL_P(end))
                range_each_func(range, each_i, 0);
            else
                for (;; beg = rb_funcallv(beg, id_succ, 0, 0))
                    rb_yield(beg);
        }
    }
    return range;
}

#endObject

Returns the object that defines the end of self.

(1..4).end  # => 4
(1...4).end # => 4
(1..).end   # => nil

Related: Range#begin, Range#last.

Returns:



1198
1199
1200
1201
1202
# File 'range.c', line 1198

static VALUE
range_end(VALUE range)
{
    return RANGE_END(range);
}

#to_aArray

Returns an array containing the elements in self, if a finite collection; raises an exception otherwise.

(1..4).to_a     # => [1, 2, 3, 4]
(1...4).to_a    # => [1, 2, 3]
('a'..'d').to_a # => ["a", "b", "c", "d"]

Returns:



869
870
871
872
873
874
875
876
# File 'range.c', line 869

static VALUE
range_to_a(VALUE range)
{
    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot convert endless range to an array");
    }
    return rb_call_super(0, 0);
}

#eql?(other) ⇒ Boolean

Returns true if and only if:

  • other is a range.

  • other.begin eql? self.begin.

  • other.end eql? self.end.

  • other.exclude_end? == self.exclude_end?.

Otherwise returns false.

r = (1..5)
r.eql?(1..5)                  # => true
r = Range.new(1, 5)
r.eql?('foo')                 # => false
r.eql?(2..5)                  # => false
r.eql?(1..4)                  # => false
r.eql?(1...5)                 # => false
r.eql?(Range.new(1, 5, true)) # => false

Note that even with the same argument, the return values of #== and #eql? can differ:

(1..2) == (1..2.0)   # => true
(1..2).eql? (1..2.0) # => false

Related: Range#==.

Returns:

  • (Boolean)


250
251
252
253
254
255
256
257
258
# File 'range.c', line 250

static VALUE
range_eql(VALUE range, VALUE obj)
{
    if (range == obj)
        return Qtrue;
    if (!rb_obj_is_kind_of(obj, rb_cRange))
        return Qfalse;
    return rb_exec_recursive_paired(recursive_eql, range, obj, obj);
}

#exclude_end?Boolean

Returns true if self excludes its end value; false otherwise:

Range.new(2, 5).exclude_end?       # => false
Range.new(2, 5, true).exclude_end? # => true
(2..5).exclude_end?                # => false
(2...5).exclude_end?               # => true

Returns:

  • (Boolean)


132
133
134
135
136
# File 'range.c', line 132

static VALUE
range_exclude_end_p(VALUE range)
{
    return RBOOL(EXCL(range));
}

#firstObject #first(n) ⇒ Array

With no argument, returns the first element of self, if it exists:

(1..4).first     # => 1
('a'..'d').first # => "a"

With non-negative integer argument n given, returns the first n elements in an array:

(1..10).first(3) # => [1, 2, 3]
(1..10).first(0) # => []
(1..4).first(50) # => [1, 2, 3, 4]

Raises an exception if there is no first element:

(..4).first # Raises RangeError

Overloads:



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
# File 'range.c', line 1242

static VALUE
range_first(int argc, VALUE *argv, VALUE range)
{
    VALUE n, ary[2];

    if (NIL_P(RANGE_BEG(range))) {
        rb_raise(rb_eRangeError, "cannot get the first element of beginless range");
    }
    if (argc == 0) return RANGE_BEG(range);

    rb_scan_args(argc, argv, "1", &n);
    ary[0] = n;
    ary[1] = rb_ary_new2(NUM2LONG(n));
    rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary);

    return ary[1];
}

#hashInteger

Returns the integer hash value for self. Two range objects r0 and r1 have the same hash value if and only if r0.eql?(r1).

Related: Range#eql?, Object#hash.

Returns:



271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# File 'range.c', line 271

static VALUE
range_hash(VALUE range)
{
    st_index_t hash = EXCL(range);
    VALUE v;

    hash = rb_hash_start(hash);
    v = rb_hash(RANGE_BEG(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    v = rb_hash(RANGE_END(range));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    hash = rb_hash_uint(hash, EXCL(range) << 24);
    hash = rb_hash_end(hash);

    return ST2FIX(hash);
}

#include?(object) ⇒ Boolean

Returns true if object is an element of self, false otherwise:

(1..4).include?(2)        # => true
(1..4).include?(5)        # => false
(1..4).include?(4)        # => true
(1...4).include?(4)       # => false
('a'..'d').include?('b')  # => true
('a'..'d').include?('e')  # => false
('a'..'d').include?('B')  # => false
('a'..'d').include?('d')  # => true
('a'...'d').include?('d') # => false

If begin and end are numeric, #include? behaves like #cover?

(1..3).include?(1.5) # => true
(1..3).cover?(1.5) # => true

But when not numeric, the two methods may differ:

('a'..'d').include?('cc') # => false
('a'..'d').cover?('cc')   # => true

Related: Range#cover?.

Returns:

  • (Boolean)


1924
1925
1926
1927
1928
1929
1930
# File 'range.c', line 1924

static VALUE
range_include(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val);
    if (!UNDEF_P(ret)) return ret;
    return rb_call_super(1, &val);
}

#initialize_copy(orig) ⇒ Object

:nodoc:



112
113
114
115
116
117
118
# File 'range.c', line 112

static VALUE
range_initialize_copy(VALUE range, VALUE orig)
{
    range_modify(range);
    rb_struct_init_copy(range, orig);
    return range;
}

#inspectString

Returns a string representation of self, including begin.inspect and end.inspect:

(1..4).inspect  # => "1..4"
(1...4).inspect # => "1...4"
(1..).inspect   # => "1.."
(..4).inspect   # => "..4"

Note that returns from #to_s and #inspect may differ:

('a'..'d').to_s    # => "a..d"
('a'..'d').inspect # => "\"a\"..\"d\""

Related: Range#to_s.

Returns:



1840
1841
1842
1843
1844
# File 'range.c', line 1840

static VALUE
range_inspect(VALUE range)
{
    return rb_exec_recursive(inspect_range, range, 0);
}

#lastObject #last(n) ⇒ Array

With no argument, returns the last element of self, if it exists:

(1..4).last     # => 4
('a'..'d').last # => "d"

Note that last with no argument returns the end element of self even if #exclude_end? is true:

(1...4).last     # => 4
('a'...'d').last # => "d"

With non-negative integer argument n given, returns the last n elements in an array:

(1..10).last(3) # => [8, 9, 10]
(1..10).last(0) # => []
(1..4).last(50) # => [1, 2, 3, 4]

Note that last with argument does not return the end element of self if #exclude_end? it true:

(1...4).last(3)     # => [1, 2, 3]
('a'...'d').last(3) # => ["a", "b", "c"]

Raises an exception if there is no last element:

(1..).last # Raises RangeError

Overloads:



1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
# File 'range.c', line 1348

static VALUE
range_last(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e;

    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the last element of endless range");
    }
    if (argc == 0) return RANGE_END(range);

    b = RANGE_BEG(range);
    e = RANGE_END(range);
    if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) &&
        RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) {
        return rb_int_range_last(argc, argv, range);
    }
    return rb_ary_last(argc, argv, rb_Array(range));
}

#maxObject #max(n) ⇒ Array #max {|a, b| ... } ⇒ Object #max(n) {|a, b| ... } ⇒ Array

Returns the maximum value in self, using method <=> or a given block for comparison.

With no argument and no block given, returns the maximum-valued element of self.

(1..4).max     # => 4
('a'..'d').max # => "d"
(-4..-1).max   # => -1

With non-negative integer argument n given, and no block given, returns the n maximum-valued elements of self in an array:

(1..4).max(2)     # => [4, 3]
('a'..'d').max(2) # => ["d", "c"]
(-4..-1).max(2)   # => [-1, -2]
(1..4).max(50)    # => [4, 3, 2, 1]

If a block is given, it is called:

  • First, with the first two element of self.

  • Then, sequentially, with the so-far maximum value and the next element of self.

To illustrate:

(1..4).max {|a, b| p [a, b]; a <=> b } # => 4

Output:

[2, 1]
[3, 2]
[4, 3]

With no argument and a block given, returns the return value of the last call to the block:

(1..4).max {|a, b| -(a <=> b) } # => 1

With non-negative integer argument n given, and a block given, returns the return values of the last n calls to the block in an array:

(1..4).max(2) {|a, b| -(a <=> b) }  # => [1, 2]
(1..4).max(50) {|a, b| -(a <=> b) } # => [1, 2, 3, 4]

Returns an empty array if n is zero:

(1..4).max(0)                      # => []
(1..4).max(0) {|a, b| -(a <=> b) } # => []

Returns nil or an empty array if:

  • The begin value of the range is larger than the end value:

    (4..1).max                         # => nil
    (4..1).max(2)                      # => []
    (4..1).max {|a, b| -(a <=> b) }    # => nil
    (4..1).max(2) {|a, b| -(a <=> b) } # => []
    
  • The begin value of an exclusive range is equal to the end value:

    (1...1).max                          # => nil
    (1...1).max(2)                       # => []
    (1...1).max  {|a, b| -(a <=> b) }    # => nil
    (1...1).max(2)  {|a, b| -(a <=> b) } # => []
    

Raises an exception if either:

  • self is a endless range: (1..).

  • A block is given and self is a beginless range.

Related: Range#min, Range#minmax.

Overloads:



1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
# File 'range.c', line 1557

static VALUE
range_max(int argc, VALUE *argv, VALUE range)
{
    VALUE e = RANGE_END(range);
    int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric);

    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the maximum of endless range");
    }

    VALUE b = RANGE_BEG(range);

    if (rb_block_given_p() || (EXCL(range) && !nm) || argc) {
        if (NIL_P(b)) {
            rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method");
        }
        return rb_call_super(argc, argv);
    }
    else {
        int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e);

        if (c > 0)
            return Qnil;
        if (EXCL(range)) {
            if (!RB_INTEGER_TYPE_P(e)) {
                rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
            }
            if (c == 0) return Qnil;
            if (!RB_INTEGER_TYPE_P(b)) {
                rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
            }
            if (FIXNUM_P(e)) {
                return LONG2NUM(FIX2LONG(e) - 1);
            }
            return rb_funcall(e, '-', 1, INT2FIX(1));
        }
        return e;
    }
}

#include?(object) ⇒ Boolean

Returns true if object is an element of self, false otherwise:

(1..4).include?(2)        # => true
(1..4).include?(5)        # => false
(1..4).include?(4)        # => true
(1...4).include?(4)       # => false
('a'..'d').include?('b')  # => true
('a'..'d').include?('e')  # => false
('a'..'d').include?('B')  # => false
('a'..'d').include?('d')  # => true
('a'...'d').include?('d') # => false

If begin and end are numeric, #include? behaves like #cover?

(1..3).include?(1.5) # => true
(1..3).cover?(1.5) # => true

But when not numeric, the two methods may differ:

('a'..'d').include?('cc') # => false
('a'..'d').cover?('cc')   # => true

Related: Range#cover?.

Returns:

  • (Boolean)


1924
1925
1926
1927
1928
1929
1930
# File 'range.c', line 1924

static VALUE
range_include(VALUE range, VALUE val)
{
    VALUE ret = range_include_internal(range, val);
    if (!UNDEF_P(ret)) return ret;
    return rb_call_super(1, &val);
}

#minObject #min(n) ⇒ Array #min {|a, b| ... } ⇒ Object #min(n) {|a, b| ... } ⇒ Array

Returns the minimum value in self, using method <=> or a given block for comparison.

With no argument and no block given, returns the minimum-valued element of self.

(1..4).min     # => 1
('a'..'d').min # => "a"
(-4..-1).min   # => -4

With non-negative integer argument n given, and no block given, returns the n minimum-valued elements of self in an array:

(1..4).min(2)     # => [1, 2]
('a'..'d').min(2) # => ["a", "b"]
(-4..-1).min(2)   # => [-4, -3]
(1..4).min(50)    # => [1, 2, 3, 4]

If a block is given, it is called:

  • First, with the first two element of self.

  • Then, sequentially, with the so-far minimum value and the next element of self.

To illustrate:

(1..4).min {|a, b| p [a, b]; a <=> b } # => 1

Output:

[2, 1]
[3, 1]
[4, 1]

With no argument and a block given, returns the return value of the last call to the block:

(1..4).min {|a, b| -(a <=> b) } # => 4

With non-negative integer argument n given, and a block given, returns the return values of the last n calls to the block in an array:

(1..4).min(2) {|a, b| -(a <=> b) }  # => [4, 3]
(1..4).min(50) {|a, b| -(a <=> b) } # => [4, 3, 2, 1]

Returns an empty array if n is zero:

(1..4).min(0)                      # => []
(1..4).min(0) {|a, b| -(a <=> b) } # => []

Returns nil or an empty array if:

  • The begin value of the range is larger than the end value:

    (4..1).min                         # => nil
    (4..1).min(2)                      # => []
    (4..1).min {|a, b| -(a <=> b) }    # => nil
    (4..1).min(2) {|a, b| -(a <=> b) } # => []
    
  • The begin value of an exclusive range is equal to the end value:

    (1...1).min                          # => nil
    (1...1).min(2)                       # => []
    (1...1).min  {|a, b| -(a <=> b) }    # => nil
    (1...1).min(2)  {|a, b| -(a <=> b) } # => []
    

Raises an exception if either:

  • self is a beginless range: (..4).

  • A block is given and self is an endless range.

Related: Range#max, Range#minmax.

Overloads:



1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
# File 'range.c', line 1449

static VALUE
range_min(int argc, VALUE *argv, VALUE range)
{
    if (NIL_P(RANGE_BEG(range))) {
        rb_raise(rb_eRangeError, "cannot get the minimum of beginless range");
    }

    if (rb_block_given_p()) {
        if (NIL_P(RANGE_END(range))) {
            rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method");
        }
        return rb_call_super(argc, argv);
    }
    else if (argc != 0) {
        return range_first(argc, argv, range);
    }
    else {
        VALUE b = RANGE_BEG(range);
        VALUE e = RANGE_END(range);
        int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e);

        if (c > 0 || (c == 0 && EXCL(range)))
            return Qnil;
        return b;
    }
}

#minmaxArray #minmax {|a, b| ... } ⇒ Array

Returns a 2-element array containing the minimum and maximum value in self, either according to comparison method <=> or a given block.

With no block given, returns the minimum and maximum values, using <=> for comparison:

(1..4).minmax     # => [1, 4]
(1...4).minmax    # => [1, 3]
('a'..'d').minmax # => ["a", "d"]
(-4..-1).minmax   # => [-4, -1]

With a block given, the block must return an integer:

  • Negative if a is smaller than b.

  • Zero if a and b are equal.

  • Positive if a is larger than b.

The block is called self.size times to compare elements; returns a 2-element Array containing the minimum and maximum values from self, per the block:

(1..4).minmax {|a, b| -(a <=> b) } # => [4, 1]

Returns [nil, nil] if:

  • The begin value of the range is larger than the end value:

    (4..1).minmax                      # => [nil, nil]
    (4..1).minmax {|a, b| -(a <=> b) } # => [nil, nil]
    
  • The begin value of an exclusive range is equal to the end value:

    (1...1).minmax                          # => [nil, nil]
    (1...1).minmax  {|a, b| -(a <=> b) }    # => [nil, nil]
    

Raises an exception if self is a beginless or an endless range.

Related: Range#min, Range#max.

Overloads:

  • #minmaxArray

    Returns:

  • #minmax {|a, b| ... } ⇒ Array

    Yields:

    • (a, b)

    Returns:



1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
# File 'range.c', line 1643

static VALUE
range_minmax(VALUE range)
{
    if (rb_block_given_p()) {
        return rb_call_super(0, NULL);
    }
    return rb_assoc_new(
        rb_funcall(range, id_min, 0),
        rb_funcall(range, id_max, 0)
    );
}

#overlap?(range) ⇒ Boolean

Returns true if range overlaps with self, false otherwise:

(0..2).overlap?(1..3) #=> true
(0..2).overlap?(3..4) #=> false
(0..).overlap?(..0)   #=> true

With non-range argument, raises TypeError.

(1..3).overlap?(1)         # TypeError

Returns false if an internal call to <=> returns nil; that is, the operands are not comparable.

(1..3).overlap?('a'..'d')  # => false

Returns false if self or range is empty. “Empty range” means that its begin value is larger than, or equal for an exclusive range, its end value.

(4..1).overlap?(2..3)      # => false
(4..1).overlap?(..3)       # => false
(4..1).overlap?(2..)       # => false
(2...2).overlap?(1..2)     # => false

(1..4).overlap?(3..2)      # => false
(..4).overlap?(3..2)       # => false
(1..).overlap?(3..2)       # => false
(1..2).overlap?(2...2)     # => false

Returns false if the begin value one of self and range is larger than, or equal if the other is an exclusive range, the end value of the other:

(4..5).overlap?(2..3)      # => false
(4..5).overlap?(2...4)     # => false

(1..2).overlap?(3..4)      # => false
(1...3).overlap?(3..4)     # => false

Returns false if the end value one of self and range is larger than, or equal for an exclusive range, the end value of the other:

(4..5).overlap?(2..3)      # => false
(4..5).overlap?(2...4)     # => false

(1..2).overlap?(3..4)      # => false
(1...3).overlap?(3..4)     # => false

Note that the method wouldn’t make any assumptions about the beginless range being actually empty, even if its upper bound is the minimum possible value of its type, so all this would return true:

(...-Float::INFINITY).overlap?(...-Float::INFINITY) # => true
(..."").overlap?(..."") # => true
(...[]).overlap?(...[]) # => true

Even if those ranges are effectively empty (no number can be smaller than -Float::INFINITY), they are still considered overlapping with themselves.

Related: Range#cover?.

Returns:

  • (Boolean)


2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
# File 'range.c', line 2358

static VALUE
range_overlap(VALUE range, VALUE other)
{
    if (!rb_obj_is_kind_of(other, rb_cRange)) {
        rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Range)",
                 rb_class_name(rb_obj_class(other)));
    }

    VALUE self_beg = RANGE_BEG(range);
    VALUE self_end = RANGE_END(range);
    int self_excl = EXCL(range);
    VALUE other_beg = RANGE_BEG(other);
    VALUE other_end = RANGE_END(other);
    int other_excl = EXCL(other);

    if (empty_region_p(self_beg, other_end, other_excl)) return Qfalse;
    if (empty_region_p(other_beg, self_end, self_excl)) return Qfalse;

    if (!NIL_P(self_beg) && !NIL_P(other_beg)) {
        VALUE cmp = rb_funcall(self_beg, id_cmp, 1, other_beg);
        if (NIL_P(cmp)) return Qfalse;
        /* if both begin values are equal, no more comparisons needed */
        if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue;
    }
    else if (NIL_P(self_beg) && NIL_P(other_beg)) {
        VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end);
        return RBOOL(!NIL_P(cmp));
    }

    if (empty_region_p(self_beg, self_end, self_excl)) return Qfalse;
    if (empty_region_p(other_beg, other_end, other_excl)) return Qfalse;

    return Qtrue;
}

#reverse_each {|element| ... } ⇒ self #reverse_eachObject

With a block given, passes each element of self to the block in reverse order:

a = []
(1..4).reverse_each {|element| a.push(element) } # => 1..4
a # => [4, 3, 2, 1]

a = []
(1...4).reverse_each {|element| a.push(element) } # => 1...4
a # => [3, 2, 1]

With no block given, returns an enumerator.

Overloads:

  • #reverse_each {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)


1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
# File 'range.c', line 1127

static VALUE
range_reverse_each(VALUE range)
{
    RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);

    VALUE beg = RANGE_BEG(range);
    VALUE end = RANGE_END(range);
    int excl = EXCL(range);

    if (NIL_P(end)) {
        rb_raise(rb_eTypeError, "can't iterate from %s",
                 rb_obj_classname(end));
    }

    if (FIXNUM_P(beg) && FIXNUM_P(end)) {
        if (excl) {
            if (end == LONG2FIX(FIXNUM_MIN)) return range;

            end = rb_int_minus(end, INT2FIX(1));
        }

        range_reverse_each_fixnum_section(beg, end);
    }
    else if ((NIL_P(beg) || RB_INTEGER_TYPE_P(beg)) && RB_INTEGER_TYPE_P(end)) {
        if (excl) {
            end = rb_int_minus(end, INT2FIX(1));
        }
        range_reverse_each_positive_bignum_section(beg, end);
        range_reverse_each_fixnum_section(beg, end);
        range_reverse_each_negative_bignum_section(beg, end);
    }
    else {
        return rb_call_super(0, NULL);
    }

    return range;
}

#sizeInfinity?

Returns the count of elements in self if both begin and end values are numeric; otherwise, returns nil:

(1..4).size      # => 4
(1...4).size     # => 3
(1..).size       # => Infinity
('a'..'z').size  #=> nil

Related: Range#count.

Returns:

  • (Infinity, nil)


835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
# File 'range.c', line 835

static VALUE
range_size(VALUE range)
{
    VALUE b = RANGE_BEG(range), e = RANGE_END(range);
    if (rb_obj_is_kind_of(b, rb_cNumeric)) {
        if (rb_obj_is_kind_of(e, rb_cNumeric)) {
            return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
        }
        if (NIL_P(e)) {
            return DBL2NUM(HUGE_VAL);
        }
    }
    else if (NIL_P(b)) {
        if (rb_obj_is_kind_of(e, rb_cNumeric)) {
            return DBL2NUM(HUGE_VAL);
        }
    }

    return Qnil;
}

#step(n = 1) {|element| ... } ⇒ self #step(n = 1) ⇒ Object

Iterates over the elements of self.

With a block given and no argument, calls the block each element of the range; returns self:

a = []
(1..5).step {|element| a.push(element) } # => 1..5
a # => [1, 2, 3, 4, 5]
a = []
('a'..'e').step {|element| a.push(element) } # => "a".."e"
a # => ["a", "b", "c", "d", "e"]

With a block given and a positive integer argument n given, calls the block with element 0, element n, element 2n, and so on:

a = []
(1..5).step(2) {|element| a.push(element) } # => 1..5
a # => [1, 3, 5]
a = []
('a'..'e').step(2) {|element| a.push(element) } # => "a".."e"
a # => ["a", "c", "e"]

With no block given, returns an enumerator, which will be of class Enumerator::ArithmeticSequence if self is numeric; otherwise of class Enumerator:

e = (1..5).step(2) # => ((1..5).step(2))
e.class            # => Enumerator::ArithmeticSequence
('a'..'e').step # => #<Enumerator: ...>

Related: Range#%.

Overloads:

  • #step(n = 1) {|element| ... } ⇒ self

    Yields:

    • (element)

    Returns:

    • (self)


438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# File 'range.c', line 438

static VALUE
range_step(int argc, VALUE *argv, VALUE range)
{
    VALUE b, e, step, tmp;

    b = RANGE_BEG(range);
    e = RANGE_END(range);
    step = (!rb_check_arity(argc, 0, 1) ? INT2FIX(1) : argv[0]);

    if (!rb_block_given_p()) {
        if (!rb_obj_is_kind_of(step, rb_cNumeric)) {
            step = rb_to_int(step);
        }
        if (rb_equal(step, INT2FIX(0))) {
            rb_raise(rb_eArgError, "step can't be 0");
        }

        const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric);
        const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric);
        if ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p)) {
            return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv,
                    range_step_size, b, e, step, EXCL(range));
        }

        RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size);
    }

    step = check_step_domain(step);
    VALUE iter[2] = {INT2FIX(1), step};

    if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) {
        long i = FIX2LONG(b), unit = FIX2LONG(step);
        do {
            rb_yield(LONG2FIX(i));
            i += unit;          /* FIXABLE+FIXABLE never overflow */
        } while (FIXABLE(i));
        b = LONG2NUM(i);

        for (;; b = rb_big_plus(b, step))
            rb_yield(b);
    }
    else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */
        long end = FIX2LONG(e);
        long i, unit = FIX2LONG(step);

        if (!EXCL(range))
            end += 1;
        i = FIX2LONG(b);
        while (i < end) {
            rb_yield(LONG2NUM(i));
            if (i + unit < i) break;
            i += unit;
        }

    }
    else if (SYMBOL_P(b) && (NIL_P(e) || SYMBOL_P(e))) { /* symbols are special */
        b = rb_sym2str(b);
        if (NIL_P(e)) {
            rb_str_upto_endless_each(b, sym_step_i, (VALUE)iter);
        }
        else {
            rb_str_upto_each(b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter);
        }
    }
    else if (ruby_float_step(b, e, step, EXCL(range), TRUE)) {
        /* done */
    }
    else if (rb_obj_is_kind_of(b, rb_cNumeric) ||
             !NIL_P(rb_check_to_integer(b, "to_int")) ||
             !NIL_P(rb_check_to_integer(e, "to_int"))) {
        ID op = EXCL(range) ? '<' : idLE;
        VALUE v = b;
        int i = 0;

        while (NIL_P(e) || RTEST(rb_funcall(v, op, 1, e))) {
            rb_yield(v);
            i++;
            v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step));
        }
    }
    else {
        tmp = rb_check_string_type(b);

        if (!NIL_P(tmp)) {
            b = tmp;
            if (NIL_P(e)) {
                rb_str_upto_endless_each(b, step_i, (VALUE)iter);
            }
            else {
                rb_str_upto_each(b, e, EXCL(range), step_i, (VALUE)iter);
            }
        }
        else {
            if (!discrete_object_p(b)) {
                rb_raise(rb_eTypeError, "can't iterate from %s",
                         rb_obj_classname(b));
            }
            if (!NIL_P(e))
                range_each_func(range, step_i, (VALUE)iter);
            else
                for (;; b = rb_funcallv(b, id_succ, 0, 0))
                    step_i(b, (VALUE)iter);
        }
    }
    return range;
}

#to_aArray

Returns an array containing the elements in self, if a finite collection; raises an exception otherwise.

(1..4).to_a     # => [1, 2, 3, 4]
(1...4).to_a    # => [1, 2, 3]
('a'..'d').to_a # => ["a", "b", "c", "d"]

Returns:



869
870
871
872
873
874
875
876
# File 'range.c', line 869

static VALUE
range_to_a(VALUE range)
{
    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot convert endless range to an array");
    }
    return rb_call_super(0, 0);
}

#to_sString

Returns a string representation of self, including begin.to_s and end.to_s:

(1..4).to_s  # => "1..4"
(1...4).to_s # => "1...4"
(1..).to_s   # => "1.."
(..4).to_s   # => "..4"

Note that returns from #to_s and #inspect may differ:

('a'..'d').to_s    # => "a..d"
('a'..'d').inspect # => "\"a\"..\"d\""

Related: Range#inspect.

Returns:



1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
# File 'range.c', line 1781

static VALUE
range_to_s(VALUE range)
{
    VALUE str, str2;

    str = rb_obj_as_string(RANGE_BEG(range));
    str2 = rb_obj_as_string(RANGE_END(range));
    str = rb_str_dup(str);
    rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
    rb_str_append(str, str2);

    return str;
}