Class: Chainer::Functions::Normalization::FixedBatchNormalizationGrad
- Inherits:
-
Chainer::Function
- Object
- Chainer::Function
- Chainer::Functions::Normalization::FixedBatchNormalizationGrad
- Includes:
- Calculation
- Defined in:
- lib/chainer/functions/normalization/batch_normalization.rb
Instance Attribute Summary
Attributes inherited from Chainer::Function
#inputs, #output_data, #outputs, #owned_node, #rank, #retain_after_backward
Instance Method Summary collapse
- #backward(inputs, grad_outputs) ⇒ Object
- #forward(inputs) ⇒ Object
-
#initialize(eps, expander, axis, inv_std, inv_var) ⇒ FixedBatchNormalizationGrad
constructor
A new instance of FixedBatchNormalizationGrad.
Methods included from Calculation
#apply_bn_fwd, #x_hat, #zero_if_none
Methods inherited from Chainer::Function
#backward_cpu, #backward_gpu, #call, #forward_cpu, #forward_gpu, #label, #node, #retain_inputs, #retain_outputs
Constructor Details
#initialize(eps, expander, axis, inv_std, inv_var) ⇒ FixedBatchNormalizationGrad
Returns a new instance of FixedBatchNormalizationGrad.
220 221 222 223 224 225 226 |
# File 'lib/chainer/functions/normalization/batch_normalization.rb', line 220 def initialize(eps, , axis, inv_std, inv_var) @eps = eps = @axis = axis @inv_std = inv_std @inv_var = inv_var end |
Instance Method Details
#backward(inputs, grad_outputs) ⇒ Object
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# File 'lib/chainer/functions/normalization/batch_normalization.rb', line 252 def backward(inputs, grad_outputs) x, gamma, mean, _, gy = inputs ggx1, gggamma1, ggbeta1, ggmean1, ggvar1 = grad_outputs gx1, ggamma1, gbeta1, gmean1, gvar1 = output_data # Handle None in output gradients. xp = Chainer.get_array_module(x) ggx1 = zero_if_none(xp, ggx1, x.shape, x.class) gggamma1 = zero_if_none(xp, gggamma1, gamma.shape, gamma.class) ggbeta1 = zero_if_none(xp, ggbeta1, gamma.shape, gamma.class) ggmean1 = zero_if_none(xp, ggmean1, mean.shape, mean.class) ggvar1 = zero_if_none(xp, ggvar1, mean.shape, mean.class) = x_hat = x_hat(x, .(mean), .(@inv_std)) tmp = -0.5 * ggvar1 gamma_over_var = gamma * @inv_var g_gamma_over_var = tmp * ggamma1 gggamma2 = gggamma1 + tmp * gamma_over_var gx_hat = gy * .(gggamma2) gx2 = .(@inv_std) * gx_hat gmean2 = -@inv_std * gx_hat.sum(axis: @axis) g_gamma_over_std = (ggx1 * gy).sum(axis: @axis) - ggmean1 * gbeta1 ggbeta2 = ggbeta1 - ggmean1 * @gamma_over_std ggy2 = (.(gggamma2) * x_hat + .(ggbeta2) + .(@gamma_over_std) * ggx1) ggamma2 = (@inv_var * g_gamma_over_var + @inv_std * g_gamma_over_std) gvar2 = -(ggamma2 * gamma_over_var + 0.5 * @inv_var * ((x_hat * gx_hat).sum(axis: @axis) - @gamma_over_std * g_gamma_over_std)) [gx2, ggamma2, gmean2, gvar2, ggy2] end |
#forward(inputs) ⇒ Object
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# File 'lib/chainer/functions/normalization/batch_normalization.rb', line 228 def forward(inputs) retain_inputs([0, 1, 2, 4]) x, gamma, mean, var, gy = inputs = xp = Chainer.get_array_module(x) if @inv_std.nil? || @inv_var.nil? @inv_var = (var + @eps).reciprocal @inv_std = xp::NMath.sqrt(@inv_var) end @gamma_over_std = gamma * @inv_std x_hat = x_hat(x, .(mean), .(@inv_std)) gx = .(@gamma_over_std) * gy gbeta = gy.sum(axis: @axis) ggamma = (x_hat * gy).sum(axis: @axis) gmean = -@gamma_over_std * gbeta gvar = -0.5 * gamma * @inv_var * ggamma retain_outputs([0, 1, 2, 3, 4]) [gx, ggamma, gbeta, gmean, gvar] end |