Module: Chainer
- Defined in:
- lib/chainer/function_node.rb,
lib/chainer.rb,
lib/chainer/cuda.rb,
lib/chainer/link.rb,
lib/chainer/device.rb,
lib/chainer/backend.rb,
lib/chainer/version.rb,
lib/chainer/function.rb,
lib/chainer/reporter.rb,
lib/chainer/variable.rb,
lib/chainer/optimizer.rb,
lib/chainer/parameter.rb,
lib/chainer/serializer.rb,
lib/chainer/utils/conv.rb,
lib/chainer/utils/math.rb,
lib/chainer/initializer.rb,
lib/chainer/utils/array.rb,
lib/chainer/configuration.rb,
lib/chainer/testing/array.rb,
lib/chainer/training/util.rb,
lib/chainer/variable_node.rb,
lib/chainer/datasets/cifar.rb,
lib/chainer/datasets/mnist.rb,
lib/chainer/gradient_check.rb,
lib/chainer/hyperparameter.rb,
lib/chainer/utils/variable.rb,
lib/chainer/dataset/convert.rb,
lib/chainer/gradient_method.rb,
lib/chainer/optimizers/adam.rb,
lib/chainer/dataset/iterator.rb,
lib/chainer/training/trainer.rb,
lib/chainer/training/updater.rb,
lib/chainer/initializers/init.rb,
lib/chainer/utils/initializer.rb,
lib/chainer/functions/math/exp.rb,
lib/chainer/functions/math/sum.rb,
lib/chainer/training/extension.rb,
lib/chainer/initializers/normal.rb,
lib/chainer/serializers/marshal.rb,
lib/chainer/functions/array/cast.rb,
lib/chainer/initializers/uniform.rb,
lib/chainer/initializers/constant.rb,
lib/chainer/datasets/tuple_dataset.rb,
lib/chainer/links/model/classifier.rb,
lib/chainer/functions/array/reshape.rb,
lib/chainer/functions/array/squeeze.rb,
lib/chainer/functions/math/identity.rb,
lib/chainer/functions/noise/dropout.rb,
lib/chainer/links/connection/linear.rb,
lib/chainer/optimizers/momentum_sgd.rb,
lib/chainer/functions/array/rollaxis.rb,
lib/chainer/functions/activation/relu.rb,
lib/chainer/functions/activation/tanh.rb,
lib/chainer/functions/array/transpose.rb,
lib/chainer/functions/math/basic_math.rb,
lib/chainer/iterators/serial_iterator.rb,
lib/chainer/links/connection/embed_id.rb,
lib/chainer/training/standard_updater.rb,
lib/chainer/training/triggers/interval.rb,
lib/chainer/functions/array/select_item.rb,
lib/chainer/functions/connection/linear.rb,
lib/chainer/functions/activation/sigmoid.rb,
lib/chainer/functions/array/broadcast_to.rb,
lib/chainer/functions/pooling/pooling_2d.rb,
lib/chainer/training/extensions/snapshot.rb,
lib/chainer/functions/connection/embed_id.rb,
lib/chainer/functions/evaluation/accuracy.rb,
lib/chainer/training/extensions/evaluator.rb,
lib/chainer/training/extensions/log_report.rb,
lib/chainer/functions/activation/leaky_relu.rb,
lib/chainer/functions/activation/relu_grad2.rb,
lib/chainer/links/connection/convolution_2d.rb,
lib/chainer/functions/activation/log_softmax.rb,
lib/chainer/functions/pooling/max_pooling_2d.rb,
lib/chainer/training/extensions/print_report.rb,
lib/chainer/training/extensions/progress_bar.rb,
lib/chainer/functions/activation/sigmoid_grad.rb,
lib/chainer/functions/loss/mean_squared_error.rb,
lib/chainer/functions/connection/convolution_2d.rb,
lib/chainer/functions/loss/softmax_cross_entropy.rb,
lib/chainer/functions/pooling/average_pooling_2d.rb,
lib/chainer/functions/connection/deconvolution_2d.rb,
lib/chainer/training/extensions/exponential_shift.rb,
lib/chainer/links/normalization/batch_normalization.rb,
lib/chainer/functions/connection/convolution_2d_grad_w.rb,
lib/chainer/functions/normalization/batch_normalization.rb
Overview
Function node of the computational graph. FunctionNode is a class representing a node in a computational graph. The node corresponds to an application of a differentiable function to input variables. When a differentiable function is applied to ‘Chainer::Variable` objects, it creates an instance of FunctionNode implementation and calls its `apply` method. The `apply` method basically does the following three things.
1. Adding an edge from the function node to the variable node corresponding to each input.
The node of each input is extracted by `Chainer::`Variable.node`.
2. Computing the output arrays of the function.
3. Creating a :class:`Variable` object for each output array and
adding an edge from the node of the variable to the function node.
The output variables are then returned.
Defined Under Namespace
Modules: CUDA, Dataset, Datasets, Device, Functions, Initializers, Iterators, Links, Optimizers, ReportService, Serializers, Testing, Training, Utils Classes: AbstractDevice, AbstractSerializer, Chain, ChainList, Configuration, CpuDevice, Deserializer, DictSummary, Function, FunctionAdapter, FunctionNode, GpuDevice, GradientMethod, Hyperparameter, HyperparameterProxy, Initializer, Link, Optimizer, Parameter, Reporter, Serializer, Summary, UpdateRule, Variable, VariableNode, WeightDecay
Constant Summary collapse
- VERSION =
"0.4.1"
Class Method Summary collapse
- ._as_tuple(x) ⇒ Object
- ._copy_arrays(xs) ⇒ Object
-
.array?(obj) ⇒ Boolean
Returns true if the argument is either of
Numo::NArray
orCumo::NArray
. -
.check_backward(func, x_data, y_grad, params = [], eps: 0.001, atol: 1e-5, rtol: 1e-4, no_grads: nil, dtype: nil) ⇒ Object
Test backward procedure of a given function.
- .check_double_backward(func, x_data, y_grad, x_grad_grad, params = [], params_grad_grad = [], eps: 1e-3, atol: 1e-4, rtol: 1e-3, no_grads: nil, dtype: nil) ⇒ Object
- .configuration ⇒ Object
- .configure {|configuration| ... } ⇒ Object
-
.get_array_module(*args) ⇒ Class
Gets an appropriate one from
Numo::NArray
orCumo::NArray
from given arrays. - .grad(outputs, inputs, grad_outputs: nil, grad_inputs: nil, set_grad: false, retain_grad: false, enable_double_backprop: false) ⇒ Object
-
.numerical_grad(f, inputs, grad_outputs, eps = 1e-3) ⇒ Array
Computes numerical gradient by finite differences.
Class Method Details
._as_tuple(x) ⇒ Object
53 54 55 56 57 58 59 |
# File 'lib/chainer/gradient_check.rb', line 53 def _as_tuple(x) if x.is_a? Array return x else return [x] end end |
._copy_arrays(xs) ⇒ Object
2 3 4 |
# File 'lib/chainer/gradient_check.rb', line 2 def _copy_arrays(xs) xs.map{|x| Chainer.array?(x) ? x.dup : x} end |
.array?(obj) ⇒ Boolean
Returns true if the argument is either of Numo::NArray
or Cumo::NArray
.
19 20 21 22 23 24 25 |
# File 'lib/chainer/backend.rb', line 19 def array?(obj) if CUDA.available? return true if obj.kind_of?(Cumo::NArray) end return true if obj.kind_of?(Numo::NArray) false end |
.check_backward(func, x_data, y_grad, params = [], eps: 0.001, atol: 1e-5, rtol: 1e-4, no_grads: nil, dtype: nil) ⇒ Object
func
is called many times to get numerical gradients for all inputs. This function doesn’t work correctly when func
behaves randomly as it gets different gradients.
Test backward procedure of a given function.
This function automatically check backward-process of given function. For example, when you have a Chainer::Function
class MyFunc
, that gets two arguments and returns one value, you can make its test like this:
def test_my_func(self):
func = MyFunc()
x1_data = Numo::NArray[...]
x2_data = Numo::NArray[...]
gy_data = Numo::NArray[...]
check_backward(func, [x1_data, x2_data], gy_data)
This method creates Chainer::Variable
objects with x_data
and calls func
with the Chainer::Variable
s to get its result as Chainer::Variable
. Then, it sets y_grad
array to grad
attribute of the result and calls backward
method to get gradients of the inputs. To check correctness of the gradients, the function calls numerical_grad
to calculate numerically the gradients and compares the types of gradients with Chainer::Testing.assert_allclose
. If input objects (x1_data
or/and x2_data
in this example) represent integer variables, their gradients are ignored.
You can simplify a test when MyFunc
gets only one argument:
check_backward(func, x1_data, gy_data)
If MyFunc
is a loss function which returns a zero-dimensional array, pass nil
to gy_data
. In this case, it sets 1
to grad
attribute of the result:
check_backward(my_loss_func, [x1_data, x2_data], nil)
If MyFunc
returns multiple outputs, pass all gradients for outputs as a Array:
gy1_data = Numo::NArray[...]
gy2_data = Numo::NArray[...]
check_backward(func, x1_data, [gy1_data, gy2_data])
You can also test a Chainer::Link
. To check gradients of parameters of the link, set a Array of the parameters to params
arguments:
check_backward(my_link, [x1_data, x2_data], gy_data, [my_link.W, my_link.b])
Note that params
are not Numo::NArray
s, but Chainer::Variables
s.
Function objects are acceptable as func
argument:
check_backward(lambda{|x1, x1| f(x1, x2)}, [x1_data, x2_data], gy_data)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# File 'lib/chainer/gradient_check.rb', line 147 def check_backward(func, x_data, y_grad, params=[], eps: 0.001, atol: 1e-5, rtol: 1e-4, no_grads: nil, dtype: nil) x_data = _as_tuple(x_data) xm = Chainer.get_array_module(*x_data) if !y_grad.nil? y_grad = _as_tuple(y_grad) end params = _as_tuple(params) xs = x_data.map{|x| Chainer::Variable.new(x)} y = func.(*xs) y = _as_tuple(y) y = Chainer::Functions::Math::Identity.new.apply(y) y_grad = set_y_grad(y, y_grad) # Clear gradients which may exist if func calls backward inside of itself. clear_grads(xs) clear_grads(params) # We only need to call `backward` for one result `Chainer::Variable`. # `Chainer::Variable.backward` method calls `Chainer::Function.backward` of its creator. y[0].backward() param_data = params.map { |p| p.data } if dtype.nil? casted_xs = x_data.map { |x| Chainer::Variable.new(x) } else raise '`dtype` is allowed only float type' if dtype != xm::DFloat && dtype != xm::SFloat casted_xs = x_data.map { |x| x.is_a?(Numo::NArray) ? Chainer::Variable.new(x.cast_to(dtype)) : x } end if no_grads.nil? no_grads = xs.map { |x| x.dtype != Numo::SFloat && x.dtype != Numo::DFloat } else raise "Length of no_grads param and xs should be same." if no_grads.size != xs.size end casted_data = casted_xs.map { |x| x.data.dup } no_grads.zip(xs).each do |skip, x| if skip raise "x.grad is not nil" if x.grad != nil else raise 'gradients of some arguments are not calculated' if x.grad.nil? end end # Keep the gradient arrays of params which may be overwritten by func params_grad = params.map(&:grad) if dtype.nil? one = Numo::DFloat.new().fill(1.0) else one = dtype.new().fill(1.0) end g = lambda do # This functions is called twice in `numerical_grad`. # `one` is `1 + epsilon` or `1 - epsilon` in these calls. # See the document of `numerical_grad`. no_grads.zip(casted_xs, casted_data).each do |skip, cx, data| next if skip || cx.data.empty? # astype is require to store data with the given type data = (one * data).cast_to(data.class) cx.data = data end params.zip(param_data).each do |param, data| if !dtype.nil? param_dtype = dtype else param_dtype = param.dtype end # The inner astype is required to calculates __mul__ in # `param_type` when data is low accuracy float. # The outer one is require to store data with the given type. param.data = (one * data.cast_to(param_dtype)).cast_to(param_dtype) end # Clear gradients to support func that calls backward inside of itself. clear_grads(casted_xs) clear_grads(params) ys = func.(*casted_xs) ys = _as_tuple(ys) ys_data = ys.map { |y| y.data } no_grads.zip(casted_xs, casted_data).each do |skip, cx, data| next if skip cx.data = data end params.zip(param_data).each do |param, data| param.data = data end ys_data end gx, = numerical_grad(g, [one], y_grad, eps) gx_accum = 0 no_grads.zip(xs, casted_xs).each do |skip, x, cx| next if skip gxi = x.grad.flatten.dup cxi = cx.data.flatten.dup unless dtype.nil? gxi = gxi.cast_to(dtype) cxi = cxi.cast_to(dtype) end gx_accum += gxi.empty? ? 0 : gxi.dot(cxi) end params.zip(params_grad).each do |p, gpi| gpi =gpi.flatten.dup pi = p.data.flatten.dup unless dtype.nil? gpi = gpi.cast_to(dtype) pi = pi.cast_to(dtype) end gx_accum += gpi.dot(pi) end Chainer::Testing.assert_allclose(gx, gx_accum, atol: atol, rtol: rtol) end |
.check_double_backward(func, x_data, y_grad, x_grad_grad, params = [], params_grad_grad = [], eps: 1e-3, atol: 1e-4, rtol: 1e-3, no_grads: nil, dtype: nil) ⇒ Object
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# File 'lib/chainer/gradient_check.rb', line 270 def check_double_backward(func, x_data, y_grad, x_grad_grad, params=[], params_grad_grad=[], eps: 1e-3, atol: 1e-4, rtol: 1e-3, no_grads: nil, dtype: nil) x_data = _as_tuple(x_data) params = _as_tuple(params) n_x = x_data.size first_order_grad = -> *inputs do xs = inputs[0...n_x] gys = inputs[n_x..-1] y = _as_tuple(func.(*xs)) # Let all elements of y share the same creator. # See the comment in check_backward. y = Chainer::Functions::Math::Identity.new.apply(y) set_y_grad(y, gys) y[0].backward(enable_double_backprop: true) xs.map(&:grad_var) + params.map(&:grad_var) end inputs = x_data + _as_tuple(y_grad) grad_grad = _as_tuple(x_grad_grad) + _as_tuple(params_grad_grad) check_backward(first_order_grad, inputs, grad_grad, params=params, eps: eps, atol: atol, rtol: rtol, no_grads: no_grads, dtype: dtype) end |
.configuration ⇒ Object
97 98 99 |
# File 'lib/chainer.rb', line 97 def self.configuration @configuration ||= Configuration.new end |
.configure {|configuration| ... } ⇒ Object
93 94 95 |
# File 'lib/chainer.rb', line 93 def self.configure yield(configuration) end |
.get_array_module(*args) ⇒ Class
Gets an appropriate one from Numo::NArray
or Cumo::NArray
from given arrays.
6 7 8 9 10 11 12 |
# File 'lib/chainer/backend.rb', line 6 def get_array_module(*args) arrays = args.map {|v| v.kind_of?(Chainer::Variable) ? v.data : v } if CUDA.available? return Cumo if arrays.any? {|a| a.kind_of?(Cumo::NArray) } end return Numo end |
.grad(outputs, inputs, grad_outputs: nil, grad_inputs: nil, set_grad: false, retain_grad: false, enable_double_backprop: false) ⇒ Object
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# File 'lib/chainer/function_node.rb', line 248 def self.grad(outputs, inputs, grad_outputs: nil, grad_inputs: nil, set_grad: false, retain_grad: false, enable_double_backprop: false) # The implementation consists of three steps. if !outputs.is_a?(Array) raise TypeError, "outputs must be Array, not #{outputs.class}" end if !inputs.is_a?(Array) raise TypeError, "inputs must be Array, not #{inputs.class}" end if !grad_outputs.nil? && !grad_outputs.is_a?(Array) raise TypeError, "grad_outputs must be Array, not #{grad_outputs.class}" end if !grad_inputs.nil? && !grad_inputs.is_a?(Array) raise TypeError, "grad_inputs must be Array, not #{grad_inputs.class}" end # 1. Backward enumeration: all the nodes reachable backward from the output # nodes are enumerated. The forward direction links are collected in # this step. Note that the variable nodes whose requires_grad is false # are ignored and their creators are not searched. candidate_funcs = outputs.map(&:creator_node).compact visited_funcs = Set.new forward_graph = {} while func = candidate_funcs.pop next if visited_funcs.include?(func) visited_funcs.add(func) func.inputs.each do |x| next unless x.requires_grad forward_graph[x] = [] if forward_graph[x].nil? forward_graph[x] << func creator = x.creator_node if creator && !visited_funcs.include?(creator) candidate_funcs << creator end end end # 2. Forward enumeration: all the nodes in the subgraph reachable from the # input nodes are enumerated. The extracted (sub-)subgraph is the union # of all paths that backpropagation will visit. candidate_vars = inputs.map(&:node) visited_funcs = Set.new grad_required = Set.new while x = candidate_vars.pop grad_required.add(x) forward_graph[x].each do |func| next if visited_funcs.include?(func) visited_funcs.add(func) func.outputs.each do |y_ref| y = y_ref.__getobj__ if y && forward_graph[y] candidate_vars << y end end end end # 3. Backpropagation: the backpropagation is executed along the # (sub-)subgraph. It uses the topological order of the subgraph which is # induced by the reversed order of function applications ("rank"). grads = {} # mapping from variable nodes to their gradients # Initialize the gradient mapping. grad_outputs = [nil] * outputs.size if grad_outputs.nil? outputs.zip(grad_outputs).each do |y, gy| if gy.nil? gy_data = y.data.new_ones gy = Chainer::Variable.new(gy_data, requires_grad: false) end grads[y.node] = gy end unless grad_inputs.nil? inputs.zip(grad_inputs).each do |x, gx| grads[x.node] = gx unless gx.nil? end end # Backprop implementation. It edits grads which will only contain the # gradients w.r.t. the inputs. old_enable_backprop = Chainer.configuration.enable_backprop Chainer.configuration.enable_backprop = enable_double_backprop backprop(outputs, inputs, grad_required, retain_grad, grads) Chainer.configuration.enable_backprop = old_enable_backprop # Extract the gradients w.r.t. the inputs and return them. ret = inputs.map { |x| grads[x.node] } if set_grad inputs.zip(ret).each do |x, gx| x.grad_var = gx end end ret end |
.numerical_grad(f, inputs, grad_outputs, eps = 1e-3) ⇒ Array
Computes numerical gradient by finite differences.
This function is used to implement gradient check. For usage example, see unit tests of Chainer::Functions.
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
# File 'lib/chainer/gradient_check.rb', line 21 def numerical_grad(f, inputs, grad_outputs, eps=1e-3) raise unless eps > 0 inputs = inputs.to_a grad_outputs = grad_outputs.to_a grads = inputs.map{|x| x.new_zeros()} inputs.zip(grads).each do |x, gx| orig_x = x.dup # hold original value x.each_with_index{|_, *i| orig = orig_x[*i] x[*i] = orig + eps ys1 = _copy_arrays(f.()) x[*i] = orig - eps ys2 = _copy_arrays(f.()) x[*i] = orig ys1.zip(ys2, grad_outputs).each do |y1, y2, gy| next if gy.nil? diff = y1 - y2 if Chainer.array?(diff) && diff.empty? dot = 0 else dot = (diff * gy).sum end gx[*i] += dot / (2 * eps) end } end return grads end |