Class: Chainer::Functions::Normalization::BatchNormalization
- Inherits:
-
Chainer::FunctionNode
- Object
- Chainer::FunctionNode
- Chainer::Functions::Normalization::BatchNormalization
- Includes:
- Calculation
- Defined in:
- lib/chainer/functions/normalization/batch_normalization.rb
Instance Attribute Summary collapse
-
#running_mean ⇒ Object
readonly
Returns the value of attribute running_mean.
-
#running_var ⇒ Object
readonly
Returns the value of attribute running_var.
Attributes inherited from Chainer::FunctionNode
Class Method Summary collapse
Instance Method Summary collapse
- #backward(indexes, grad_outputs) ⇒ Object
- #forward(inputs) ⇒ Object
-
#initialize(eps: 2e-5, mean: nil, var: nil, decay: 0.9) ⇒ BatchNormalization
constructor
A new instance of BatchNormalization.
Methods included from Calculation
#apply_bn_fwd, #x_hat, #zero_if_none
Methods inherited from Chainer::FunctionNode
#apply, #backward_accumulate, #forward_cpu, #get_retained_inputs, #get_retained_outputs, #label, #output_data, #retain_inputs, #retain_outputs, #unchain
Constructor Details
#initialize(eps: 2e-5, mean: nil, var: nil, decay: 0.9) ⇒ BatchNormalization
Returns a new instance of BatchNormalization.
34 35 36 37 38 39 40 41 42 |
# File 'lib/chainer/functions/normalization/batch_normalization.rb', line 34 def initialize(eps: 2e-5, mean: nil, var: nil, decay: 0.9) @mean = nil @inv_std = nil @running_mean = mean @running_var = var @eps = eps @decay = decay end |
Instance Attribute Details
#running_mean ⇒ Object (readonly)
Returns the value of attribute running_mean.
28 29 30 |
# File 'lib/chainer/functions/normalization/batch_normalization.rb', line 28 def running_mean @running_mean end |
#running_var ⇒ Object (readonly)
Returns the value of attribute running_var.
28 29 30 |
# File 'lib/chainer/functions/normalization/batch_normalization.rb', line 28 def running_var @running_var end |
Class Method Details
.batch_normalization(x, gamma, beta, eps: 2e-5, running_mean: nil, running_var: nil, decay: 0.9) ⇒ Object
30 31 32 |
# File 'lib/chainer/functions/normalization/batch_normalization.rb', line 30 def self.batch_normalization(x, gamma, beta, eps: 2e-5, running_mean: nil, running_var: nil, decay: 0.9) BatchNormalization.new(eps: eps, mean: running_mean, var: running_var, decay: decay).apply([x, gamma, beta])[0] end |
Instance Method Details
#backward(indexes, grad_outputs) ⇒ Object
88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
# File 'lib/chainer/functions/normalization/batch_normalization.rb', line 88 def backward(indexes, grad_outputs) x, gamma = get_retained_inputs gy, = grad_outputs # hatappi debug #@mean = @mean.class.new(@mean.shape).seq #@inv_std = @inv_std.class.new(@inv_std.shape).seq #x.data = x.data.class.new(x.shape).seq #gamma.data = gamma.data.class.new(gamma.shape).seq #gy.data = gy.data.class.new(gy.shape).seq f = BatchNormalizationGrad.new(@eps, @expander, @axis, @mean, @inv_std) f.(x, gamma, gy) end |
#forward(inputs) ⇒ Object
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
# File 'lib/chainer/functions/normalization/batch_normalization.rb', line 44 def forward(inputs) retain_inputs([0, 1]) x, gamma, beta = inputs xp = Chainer.get_array_module(x) if @running_mean.nil? @running_mean = xp::NArray[*gamma].new_zeros @running_var = xp::NArray[*gamma].new_zeros end # expander inserts singleton dimensions to gamma and beta so that they # can be broadcasted with x. head_ndim = gamma.ndim + 1 # TODO: expander = (None, Ellipsis) + (None,) * (x.ndim - head_ndim) suffix = [1] * (x.ndim - head_ndim) = -> (arr) do shape = [1] + arr.shape + suffix arr.reshape(*shape) end @expander = @axis = [0] + (head_ndim...(x.ndim)).to_a gamma = .(gamma) beta = .(beta) @mean = x.mean(axis: @axis) # TODO: Numo::Array can not be specified standard deviation var = ((x - x.mean(axis: @axis, keepdims: true)) ** 2).mean(axis: @axis) var += @eps @inv_std = var ** (-0.5) y = apply_bn_fwd(xp, x, .(@mean), .(@inv_std), gamma, beta) # Update running statistics m = x.size.div(gamma.size) adjust = m / [m - 1.0, 1.0].max @running_mean *= @decay @running_mean += (1 - @decay) * @mean @running_var *= @decay @running_var += (1 - @decay) * adjust * var [y] end |