Class: Rebuild
- Inherits:
-
Object
- Object
- Rebuild
- Defined in:
- lib/gene_assembler/rebuild.rb
Instance Method Summary collapse
-
#add_uni_hsp(model, cluster) ⇒ Object
Compara contigs uni-hsp con contig modelo para determinar pseudogenes.
- #array_contigs_to_contig(array_contigs) ⇒ Object
-
#build_gene_array(contigs, reference = nil) ⇒ Object
GEnera un array que representa la posicion relativa de todos los contigs entre si a nivel de los exones y de intrones.
-
#contig_compact(contigs) ⇒ Object
Toma un conjunto de contigs, busca los q son correlativos, los fusiona, pasa por el exonerate y devuelve un array con los nuevos contig.
-
#contigs_seq_merge(contigs) ⇒ Object
def.
- #correct_model(model, length_model, gff_dataset, sequences_hash) ⇒ Object
-
#eval_model(local_model, length) ⇒ Object
modifica model asi q se le ha de pasar una copia.
- #format_model(model) ⇒ Object
- #gene_array_and_compact(rebuild, cluster, reference) ⇒ Object
-
#gene_array_report(gene_array, contigs, act_array) ⇒ Object
Muestra el array de la funncion build_gene_array y una representacion de las secuencias.
-
#gene_compact(gene_array, contigs) ⇒ Object
Generacion modelo del gen quitando todas las secuencias redundantes posibles.
-
#gene_error(e, gene_name, file_error, cluster, model) ⇒ Object
e is a ruby exception object.
-
#gene_model_cut(contigs, reference = nil) ⇒ Object
Genera un modelo por corte y empalme de contigs, genera un gff y devuelve un array con objetos contig.
-
#gene_stadistics(gene_array) ⇒ Object
Calcula el nº exones diferentes que hay por cada posicion del gene_array.
-
#gene_stadistics_report(exons_stadistic, tag) ⇒ Object
Muestra estadisticas de intrones o exones.
-
#initialize(dataset, dataset_uni_hsp, path) ⇒ Rebuild
constructor
La clase ha de recibr objetos dataset.
-
#iterative_modeling_gene_w_reference(cluster, references_hash, options, sequences_hash) ⇒ Object
end main method.
-
#modeling_gene(cluster, reference, rebuild) ⇒ Object
Funcion que devuelve un objeto contig con el modelo de gen, los contigs q se han seleccionado y genera un gff del modelo.
- #overlap_test(model, output = TRUE) ⇒ Object
-
#position_reference_guided(contig, last_contig, last_position_ref, reference) ⇒ Object
Si no existe overlap devuelve -1.
-
#rebuild(options) ⇒ Object
MAIN METHOD.
- #recover_test(model, output = TRUE) ⇒ Object
-
#void_contig(contig_name, contig_length, s_length, q_beg, q_end, s_beg, s_end, contig_type, hit_type, hsp_type, single = FALSE) ⇒ Object
Genera un objeto contig con los datos proporcionados.
- #web_body(file_web) ⇒ Object
- #web_header(web, path) ⇒ Object
- #write_gbrowse_gff(gff_dataset_model, gff_dataset, path, name) ⇒ Object
- #write_model_fasta(sequences_hash, path) ⇒ Object
Constructor Details
#initialize(dataset, dataset_uni_hsp, path) ⇒ Rebuild
La clase ha de recibr objetos dataset
7 8 9 10 11 12 |
# File 'lib/gene_assembler/rebuild.rb', line 7 def initialize(dataset,dataset_uni_hsp,path) #La clase ha de recibr objetos dataset @dataset=dataset @dataset_uni_hsp=dataset_uni_hsp @path=path @db_seqs=fasta_hash(path[:exonerate_db]) end |
Instance Method Details
#add_uni_hsp(model, cluster) ⇒ Object
Compara contigs uni-hsp con contig modelo para determinar pseudogenes
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# File 'lib/gene_assembler/rebuild.rb', line 248 def add_uni_hsp(model,cluster)#Compara contigs uni-hsp con contig modelo para determinar pseudogenes contigs_uni_hsp='' is_contig=0 pseudogenes=[] @clusters_uni_hsp.each do |contigs| if contigs.first.first_hit.name==cluster.first.first_hit.name contigs_uni_hsp=contigs is_contig=1 break end end if is_contig==1 #Si se ha encontrado contigs uni-hsp se realiza la comparacion if model.class.to_s!='Array' model=[model] end model.each do |item| contigs_uni_hsp.each do |contig| start,exons=item.compare(contig) if exons>1 && !pseudogenes.include?(contig) pseudogenes << contig end end end end return pseudogenes end |
#array_contigs_to_contig(array_contigs) ⇒ Object
852 853 854 855 856 857 858 859 |
# File 'lib/gene_assembler/rebuild.rb', line 852 def array_contigs_to_contig(array_contigs) contig=Contig.new(array_contigs.first.name) array_contigs.each do |cn| contig.transfer_contig_hits(cn) end contig.length=array_contigs.last.length return contig end |
#build_gene_array(contigs, reference = nil) ⇒ Object
GEnera un array que representa la posicion relativa de todos los contigs entre si a nivel de los exones y de intrones
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# File 'lib/gene_assembler/rebuild.rb', line 276 def build_gene_array(contigs,reference=nil) #GEnera un array que representa la posicion relativa de todos los contigs entre si a nivel de los exones y de intrones gene_array=[] gene_array_introns=[] last_contig='' if !reference.nil? last_contig=reference end contigs.each do |contig| array_contig=[] array_contig_introns=[] n_exon=contig.first_hit.hsp_count #Contamos cantidad de hsps en el contig #Determinar posiciones vacias if !gene_array.empty?||reference first_exon,ex=contig.compare(last_contig) #Comparamos el contig actual con el que se ha estudiado en la iteracion anterior if reference && first_exon==-1 # Abortar alineamiento cuando un contig no coincide con la referencia if $verbose puts "\n#{contig.name} alignment step OUT OF RANGE" end gene_array=[] gene_array_introns=[] break end if first_exon==-1 gene_array.last.count.times do #Posiciones vacias cuando NO hay overlapping array_contig << 0 # Marca ausencia de exon para esa posicion array_contig_introns << 0 # Marca ausencia de intron para esa posicion end else if reference # ASignamiento de la posicion del contig respecto a la referencia void_positions=first_exon else void_positions=first_exon+gene_array.last.count(0) end void_positions.times do #Posiciones vacias cuando HAY overlapping array_contig << 0 array_contig_introns << 0 end end end #Agregar exones e intrones del contig exones=contig.exones_s introns=contig.intrones_q array_contig << exones # Marca presencia de exon para esa posicion array_contig_introns << introns # Marca presencia de exon para esa posicion gene_array << array_contig.flatten! gene_array_introns << array_contig_introns.flatten! if reference.nil? last_contig=contig end end return gene_array, gene_array_introns end |
#contig_compact(contigs) ⇒ Object
Toma un conjunto de contigs, busca los q son correlativos, los fusiona, pasa por el exonerate y devuelve un array con los nuevos contig
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
# File 'lib/gene_assembler/rebuild.rb', line 430 def contig_compact(contigs) # Toma un conjunto de contigs, busca los q son correlativos, los fusiona, pasa por el exonerate y devuelve un array con los nuevos contig cn_def=[] cn_backup=contigs.dup #Determinar contigs a fusionar cn_to_merge=[] s_end=nil last_position_ref=nil position_overlap=nil last_contig=nil fusion=[] contigs.length.times do fusion << FALSE end #Marcaje de contigs correlativos no solapantes contigs.each_with_index do |contig,i| if i>0 diference=contig.first_hit.first_hsp.s_beg-s_end if diference==0 || diference==1 fusion[i]=TRUE end end s_end=contig.first_hit.last_hsp.s_end end if fusion.include?(TRUE) #Construccion array contigs a fusionar y guardado de los solapantes fusion_contigs=[] count=0 # Marca la posicion de las fusiones fusion.each_with_index do |cont,i| if cont if !fusion_contigs.include?(contigs[i-1]) fusion_contigs << contigs[i-1] end if !fusion_contigs.include?(contigs[i]) fusion_contigs << contigs[i] end else if !fusion_contigs.empty?#Marcar fusiones cn_to_merge << fusion_contigs fusion_contigs=[] cn_def << count count+=1 end if !fusion[i+1]||fusion[i+1].nil?#Guardar contigs que no participan en las fusiones cn_def << contigs[i] end end if i+1==fusion.length && !fusion_contigs.empty? #Control fin de bucle cn_to_merge << fusion_contigs cn_def << count count+=1 end end #Generar fasta de los contig fusionados contigs_merge=contigs_seq_merge(cn_to_merge) if !contigs_merge.empty? temp=File.open(File.join(@path[:local],contigs.first.first_hit.name+'.fasta'),'w') contigs_merge.each_with_index do |seq,i| temp.puts ">Fusion_#{i}\n#{seq}" end temp.close temp_db=File.open(File.join(@path[:local],contigs.first.first_hit.name+'.db'),'w') temp_db.puts ">#{contigs.first.first_hit.name}\n#{@db_seqs[contigs.first.first_hit.name]}" temp_db.close end #Exonerating cmd="exonerate -q #{File.join(@path[:local],contigs.first.first_hit.name+'.db')} -t #{File.join(@path[:local],contigs.first.first_hit.name+'.fasta')} -Q protein -T dna -m protein2genome --percent 1 --showalignment 0 --useaatla 1 --showvulgar > #{File.join(@path[:local],contigs.first.first_hit.name+'.ex')}" #LINUX command line system(cmd) #Parsing exonerate local = ParserExonerate.new('contig','nucleotide_match', File.join(@path[:local],"#{contigs.first.first_hit.name}.ex")) store_local_ex = local.dataset #store_local_ex.each_contig {|ite| puts ite.name+' '+ite.first_hit.name; ite.indices} store_local_ex.score_correction(30) #puts "#{store_local_ex.contig_count}\t#{contigs_merge.length}" if store_local_ex.contig_count==contigs_merge.length #Recuperar atributos en contigs y cargar array con contigs def store_local_ex.each_contig_with_index{|contig,i| contig.seq=contigs_merge[i] contig.length=contigs_merge[i].length contig.first_hit.s_length=contigs.first.first_hit.s_length cn_def.each_with_index do |contig_def,j| # Busqueda de la posicion de la fusion y asignacion en el array de contigs definitivos if contig_def==i cn_def[j]=contig end end } else cn_def=cn_backup end else cn_def=contigs end return cn_def end |
#contigs_seq_merge(contigs) ⇒ Object
def
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
# File 'lib/gene_assembler/rebuild.rb', line 533 def contigs_seq_merge(contigs) #Devuelve un array con las secuencias fusionadas a partir del array contigs donde se le proporciona los arrays a fusionar cn=[] seq='' contigs.each do |contigs_to_merge| contigs_to_merge.each do |contig| if seq.empty? seq=contig.seq else seq=seq+'n'*10+contig.seq end end cn << seq seq='' end return cn end |
#correct_model(model, length_model, gff_dataset, sequences_hash) ⇒ Object
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 |
# File 'lib/gene_assembler/rebuild.rb', line 954 def correct_model(model, length_model, gff_dataset, sequences_hash) correct_add_Ns=0 if model.class.to_s=='Array' model=array_contigs_to_contig(model) model.name=model.name.gsub('_0','') model.length=length_model end correct_add_Ns=gff_dataset.correct_left_side_contigs(model) model.modified_coordenates(correct_add_Ns) model.length+=correct_add_Ns gff_dataset.align_contigs(model) #Corregir secuencia para que alinee con las features generadas if correct_add_Ns>0 sequences_hash[model.name.gsub('_model','')]='n'*correct_add_Ns+sequences_hash[model.name.gsub('_model','')] end return model end |
#eval_model(local_model, length) ⇒ Object
modifica model asi q se le ha de pasar una copia
171 172 173 174 175 176 177 178 179 180 181 |
# File 'lib/gene_assembler/rebuild.rb', line 171 def eval_model(local_model, length)#modifica model asi q se le ha de pasar una copia recover=0 overlap=0 if local_model.class.to_s=='Array' local_model=array_contigs_to_contig(local_model) local_model.length=length end recover=recover_test(local_model,FALSE) overlap=overlap_test(local_model,FALSE) return recover, overlap end |
#format_model(model) ⇒ Object
944 945 946 947 948 949 950 951 952 |
# File 'lib/gene_assembler/rebuild.rb', line 944 def format_model(model) if model.n_hits?>1 model.each_hit_with_index{|hit,i| hit.name=hit.name+"_gene_#{i}" } else model.first_hit.name=model.first_hit.name+'_gene' end end |
#gene_array_and_compact(rebuild, cluster, reference) ⇒ Object
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# File 'lib/gene_assembler/rebuild.rb', line 221 def gene_array_and_compact(rebuild,cluster,reference) # Contruir array de exones (a partir del cluster) con los hsps de forma que los solapantes se alineen en las mismas columnas #--------------------------------------------------------------------------------------------------------------------------- if rebuild gene_array,gene_array_introns=build_gene_array(cluster,reference) #Con referencia if $verbose gene_exons=gene_stadistics(gene_array) gene_stadistics_report(gene_exons,'EXONS') gene_introns=gene_stadistics(gene_array_introns) gene_stadistics_report(gene_introns,'INTRONS') end end # Seleccion de contigs para modelado de gen #----------------------------------------------------- if $verbose #Info cluster before compact array contigs gene_array_report(gene_array,cluster,rebuild) end if rebuild gene_compact(gene_array,cluster) #Se descartan los contigs redundantes y quedan aquellos que cubren todo el gen para formar el modelo end if $verbose && rebuild #Info cluster after compact array contigs gene_array_report(gene_array,cluster,rebuild) end return cluster, gene_array end |
#gene_array_report(gene_array, contigs, act_array) ⇒ Object
Muestra el array de la funncion build_gene_array y una representacion de las secuencias
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# File 'lib/gene_assembler/rebuild.rb', line 356 def gene_array_report(gene_array,contigs,act_array) #Muestra el array de la funncion build_gene_array y una representacion de las secuencias if act_array puts "\nGENE ARRAY" gene_array.each_with_index do |fila,c| print "#{contigs[c].name.center(24)}\t " print "#{contigs[c].completed}\t" fila.each do |item| print "#{item}\t" end puts "\n" end end puts "\nMAP" contigs.each do |contig| print "#{contig.name.center(25)}" print contig.draw end end |
#gene_compact(gene_array, contigs) ⇒ Object
Generacion modelo del gen quitando todas las secuencias redundantes posibles
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
# File 'lib/gene_assembler/rebuild.rb', line 376 def gene_compact(gene_array, contigs) # Generacion modelo del gen quitando todas las secuencias redundantes posibles gene_array.each_with_index do |contig,c1| if !contig next end c1_len=contig.length n_exons=contig.count{|x| x>0} gene_array.each_with_index do |contig2,c2| if !contig2 ||c1==c2 #Saltamos contigs a nil o autocomparacion next end c2_len=contig2.length # IGUAL if c1_len==c2_len if contig2.count{|x| x>0}==n_exons if contigs[c1].first_hit.first_hsp.score>=contigs[c2].first_hit.first_hsp.score gene_array[c2]=nil contigs[c2]=nil else gene_array[c1]=nil contigs[c1]=nil break end elsif contig2.count{|x| x>0}>n_exons gene_array[c1]=nil contigs[c1]=nil break else gene_array[c2]=nil contigs[c2]=nil end # MAYOR QUE elsif c1_len>c2_len if contig.count(0)<=contig2.count(0) gene_array[c2]=nil contigs[c2]=nil end # MENOR QUE elsif c1_len<c2_len if contig.count(0)==contig2.count(0) gene_array[c1]=nil contigs[c1]=nil break end end end #end contig2 end #end contig gene_array.compact! contigs.compact! end |
#gene_error(e, gene_name, file_error, cluster, model) ⇒ Object
e is a ruby exception object
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
# File 'lib/gene_assembler/rebuild.rb', line 861 def gene_error(e, gene_name, file_error, cluster, model) #e is a ruby exception object puts gene_name+' ERROR' file_error.puts "\n"+gene_name+"\n.............................." file_error.puts e. e.backtrace.each do |line| file_error.puts line end file_error.puts ',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,' cluster.each do |contig| file_error.puts contig.name #puts contig.name #contig.indices end file_error.puts '----------------------------------------------------------------------------------------' end |
#gene_model_cut(contigs, reference = nil) ⇒ Object
Genera un modelo por corte y empalme de contigs, genera un gff y devuelve un array con objetos contig
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
# File 'lib/gene_assembler/rebuild.rb', line 550 def gene_model_cut(contigs, reference=nil) #Genera un modelo por corte y empalme de contigs, genera un gff y devuelve un array con objetos contig q_beg=[] q_end=[] s_beg=[] s_end=[] seq=[] last_contig=nil last_score=0 length_model=0 multiple_lengths=[] add_length=TRUE add_last=0 last_position_ref=nil last_position=nil lengthy=[] out_of_range=FALSE contigs.each do |contig| score = contig.first_hit.first_hsp.score/contig.length*contig.exon_acumulative n_exones = contig.first_hit.hsp_count # FIRST CONTIG #------------------------------------------------------- if last_contig.nil? q_end_seq=nil #SEQ contig.first_hit.each_hsp_with_index{|hsp,i| q_beg << hsp.q_beg q_end << hsp.q_end s_beg << hsp.s_beg s_end << hsp.s_end #SEQ................................. if i==0 seq << contig.seq[0..contig.first_hit.first_hsp.q_end-1] elsif i+1==n_exones seq << contig.seq[contig.first_hit.hsps[i-1].q_end..contig.length-1] else seq << contig.seq[q_end_seq..hsp.q_end-1] end q_end_seq=hsp.q_end # ................................... } length_model+=contig.length if !reference.nil? #Posicionamiento del primer contig en la referencia last_position_ref,ex=contig.compare(reference) if last_position==-1 || last_position_ref+contig.first_hit.hsp_count-1 > reference.first_hit.hsp_count #Abortar modelado en caso de qun contig no alinee con la referencia o la sobrepase puts contig.name+' OUT OF RANGE' out_of_range=TRUE break end end # OTHER CONTIG #-------------------------------------------------------- else position_overlap,ex=contig.compare(last_contig) #Correccion posicion del contig en base a una referencia if !reference.nil? last_position_ref,position_overlap=position_reference_guided(contig,last_contig,last_position_ref,reference) if last_position_ref==-1 || last_position_ref+contig.first_hit.hsp_count-1 > reference.first_hit.hsp_count out_of_range=TRUE puts contig.name+' OUT OF RANGE' break end end # NOT OVERLAP #.......................... if position_overlap==-1 || contig.first_hit.hsp_count==1 if contig.first_hit.first_hsp.s_beg-last_contig.first_hit.last_hsp.s_end>1 # Marcar discontinuidad en caso de que el contig no sea correlativo al anterior q_beg << 0 q_end << 0 s_beg << 0 s_end << 0 multiple_lengths << length_model length_model=contig.length last=length_model add_length=FALSE seq.last << 'n'*10 #SEQ Indicacion de GAP else last=length_model #Guardamos longitud anterior para poder desplazar las coordenadas del contig correctamente length_model+=contig.length end q_end_seq=nil #SEQ contig.first_hit.hsps.each_with_index do |hsp,i| add_no=last if !add_length add_no=0 end q_beg << hsp.q_beg+add_no # Se acumula a las coordenadas la longitud del modelo q_end << hsp.q_end+add_no s_beg << hsp.s_beg s_end << hsp.s_end #SEQ................................. if i==0 cn=contig.seq[0..contig.first_hit.first_hsp.q_end-1] cs="#{cn[0..1].swapcase!}#{cn[2..-1]}" seq << cs elsif i+1==n_exones seq << contig.seq[contig.first_hit.hsps[i-1].q_end..contig.length-1] else seq << contig.seq[q_end_seq..hsp.q_end-1] end q_end_seq=hsp.q_end # ................................... end # OVERLAP #.......................... else if last_position==-1 add_last=length_model-last_contig.length end overlap=last_contig.first_hit.hsp_count-position_overlap if last_contig.first_hit.hsp_count ==1 overlap=1 end #puts "#{overlap} = #{last_contig.first_hit.hsp_count} - #{position_overlap}" add=0 dif=0 if last_score>=score add=last_contig.first_hit.last_hsp.q_end-contig.first_hit.first_hsp.q_end dif=add if overlap>1 #eliminamos ultimo exon de 'last contig' para reemplazar por el segundo de 'contig' q es mas fiable por ser interno add=last_contig.first_hit.hsp_at(last_contig.first_hit.hsp_count-overlap).q_end-contig.first_hit.first_hsp.q_end #Como se dropea el ultimo exon se alinea por el penultimo #puts "hsp:#{contig.first_hit.hsp_count}\toverlap:#{overlap}" dif=contig.first_hit.hsp_at(overlap-1).q_end q_beg=q_beg.reverse.drop(1).reverse q_end=q_end.reverse.drop(1).reverse s_beg=s_beg.reverse.drop(1).reverse s_end=s_end.reverse.drop(1).reverse seq=seq.reverse.drop(1).reverse #SEQ end if overlap==1 overlap=2 end (contig.first_hit.hsp_count-(overlap-1)).times do |n| #Añadimos el resto de exones del contig al modelo q_beg << contig.first_hit.hsp_at(n+overlap-1).q_beg+add+add_last q_end << contig.first_hit.hsp_at(n+overlap-1).q_end+add+add_last s_beg << contig.first_hit.hsp_at(n+overlap-1).s_beg s_end << contig.first_hit.hsp_at(n+overlap-1).s_end #SEQ....................................... position_hsp=n+overlap-2 if position_hsp <0 position_hsp= 0 end position_next_hsp=n+overlap-1 if position_next_hsp < 0 position_next_hsp =0 end if n==0 cn=contig.seq[contig.first_hit.hsp_at(position_hsp).q_end..contig.first_hit.hsp_at(position_next_hsp).q_end-1] cs=cn[0..1].swapcase!+cn[2..-1] seq << cs elsif position_next_hsp==contig.first_hit.hsp_count-1 seq << contig.seq[contig.first_hit.hsp_at(position_hsp).q_end..contig.length-1] else seq << contig.seq[contig.first_hit.hsp_at(position_hsp).q_end..contig.first_hit.hsp_at(position_next_hsp).q_end-1] end #............................................ end else hsp_position=last_contig.first_hit.hsp_count-2 if hsp_position<0 #para los casos de los contigs q solo poseen un hsp hsp_position=0 end add=last_contig.first_hit.hsp_at(hsp_position).q_end dif=last_contig.length-add drop=1 correction=0 if overlap>1 drop=overlap-1 correction=1 add=last_contig.first_hit.hsp_at(position_overlap).q_end-contig.first_hit.first_hsp.q_end dif=length_model-(add+add_last) end # Eliminamos exones malos de 'last_contig' (mantenemos el primero del overlap) q_beg=q_beg.reverse.drop(drop).reverse q_end=q_end.reverse.drop(drop).reverse s_beg=s_beg.reverse.drop(drop).reverse s_end=s_end.reverse.drop(drop).reverse seq=seq.reverse.drop(drop).reverse #SEQ # Añadimos los exones de 'contig' (excepto el primero) (contig.first_hit.hsp_count-correction).times do |n| #Añadimos el resto de exones del contig al modelo q_beg << contig.first_hit.hsp_at(n+correction).q_beg+add+add_last q_end << contig.first_hit.hsp_at(n+correction).q_end+add+add_last s_beg << contig.first_hit.hsp_at(n+correction).s_beg s_end << contig.first_hit.hsp_at(n+correction).s_end #SEQ............................................................. if n+1==(contig.first_hit.hsp_count-correction) n_correction=n+correction-1 if n_correction < 0 n_correction=0 end seq << contig.seq[contig.first_hit.hsp_at(n_correction).q_end..contig.length-1] elsif n==0 if n+correction==0 cn=contig.seq[0..contig.first_hit.hsp_at(n+correction).q_end-1] # Si n+corr empieza en el primer exon del contig else cn=contig.seq[contig.first_hit.hsp_at(n+correction-1).q_end..contig.first_hit.hsp_at(n+correction).q_end-1] end cs=cn[0..1].swapcase!+cn[2..-1] seq << cs else seq << contig.seq[contig.first_hit.hsp_at(n+correction-1).q_end..contig.first_hit.hsp_at(n+correction).q_end-1] end #................................................................ end end length_model+=(contig.length-dif) add_length=TRUE add_last+=add end end last_position=position_overlap last_contig=contig last_score=score lengthy << length_model end if !multiple_lengths.empty? multiple_lengths << length_model length_model=multiple_lengths end model=nil if !out_of_range #Generar modelo si todos los contigs han alineado con la referencia model=void_contig(contigs.first.first_hit.name+'_model',length_model,contigs.first.first_hit.s_length,q_beg,q_end,s_beg,s_end,'contig','gene','exon') #Merge contigs under sequence reference model_length=nil if model.class.to_s=='Array' add=0 model.each_with_index do |contig,i| contig.modified_coordenates(add) add+=contig.length if i<model.length-1 add+=10 end end model_length=add+model.last.length end model_n_exones=seq.length final_seq=seq.join else #No generar modelo si al menos un contig no alinea contra la referencia model_length=nil final_seq=nil end return model, model_length, final_seq end |
#gene_stadistics(gene_array) ⇒ Object
Calcula el nº exones diferentes que hay por cada posicion del gene_array
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# File 'lib/gene_assembler/rebuild.rb', line 329 def gene_stadistics(gene_array) #Calcula el nº exones diferentes que hay por cada posicion del gene_array exons=[] length=length2D(gene_array) length.times do |column| exon=[] gene_array.each_with_index.each do |item,row| if !exon.include?(gene_array[row][column]) && gene_array[row][column]!=0 exon << gene_array[row][column] end end exons << exon end exons_stadistic=[] exons.each do |ex| exons_stadistic << ex.compact.length end return exons_stadistic end |
#gene_stadistics_report(exons_stadistic, tag) ⇒ Object
Muestra estadisticas de intrones o exones
348 349 350 351 352 353 354 |
# File 'lib/gene_assembler/rebuild.rb', line 348 def gene_stadistics_report(exons_stadistic,tag) #Muestra estadisticas de intrones o exones print "\n#{tag}\t" exons_stadistic.each do |item| print "#{item}\t" end print "\n" end |
#iterative_modeling_gene_w_reference(cluster, references_hash, options, sequences_hash) ⇒ Object
end main method
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# File 'lib/gene_assembler/rebuild.rb', line 93 def iterative_modeling_gene_w_reference(cluster,references_hash,,sequences_hash) # Model atributes model=nil length=0 seq=nil cluster_length=0 length_cluster=0 prot_reference=cluster.first.first_hit.name array_references=references_hash[prot_reference] # Model parameters recover=0 overlap=0 #Modelo de gen en ciego if $verbose puts "\n",'|||||||||| BLIND MODELING ||||||||||' end model, length, seq, length_cluster= modeling_gene(cluster.dup,nil,) recover, overlap=eval_model(model.dup, length) if $verbose puts "\nRecover: #{recover} Overlap: #{overlap}" end guided=FALSE #Modelo de gen guiado if !array_references.nil? array_references.each do |ref| if $verbose puts "\n",'|||||||||| GUIDED MODELING ||||||||||' end guided_model, guided_length, guided_seq, guided_length_cluster = modeling_gene(cluster.dup,ref,) if guided_model.nil? # Si algun modelo sale mal se ignora next end guided_recover, guided_overlap= eval_model(guided_model.dup, guided_length) if $verbose puts "\nRecover: #{guided_recover} Overlap: #{guided_overlap}" end #Arbol de decisiones if guided_overlap <= 15 #Si el overlap es menor del 15 % if guided_overlap >= overlap-overlap*0.05 && guided_overlap <= overlap+overlap*0.05 # A mismo overlap if guided_recover > recover guided=TRUE end else # A distinto overlap recover_dif=guided_recover-recover if recover_dif < 0 # Si el guided_model tiene menos recuperacion q el anterior if recover_dif.abs >= overlap-overlap*0.05 && recover_dif.abs <= overlap+overlap*0.05 #Si la reduccion de la recuperacion se debe a la desaparicion del overlap guided=TRUE end elsif recover_dif> guided_overlap+guided_overlap*0.05 # Comprobar que la diferencia de recover no se debe a u aumento del overlap en la misma magnitud guided=TRUE end end elsif guided_overlap < overlap # Quedarnos siempre con los overlap mas bajos aun en situacion de overlap alto guided=TRUE end if guided model=guided_model length=guided_length seq=guided_seq length_cluster=guided_length_cluster recover=guided_recover overlap=guided_overlap end end end sequences_hash[prot_reference]=seq return model, length, length_cluster end |
#modeling_gene(cluster, reference, rebuild) ⇒ Object
Funcion que devuelve un objeto contig con el modelo de gen, los contigs q se han seleccionado y genera un gff del modelo
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# File 'lib/gene_assembler/rebuild.rb', line 183 def modeling_gene(cluster, reference, rebuild) #Funcion que devuelve un objeto contig con el modelo de gen, los contigs q se han seleccionado y genera un gff del modelo model=nil model_length=nil seq=nil length_cluster=0 # Reduccion iterativa de los contig para seleccionar los que van a formar parte del modelo de gen, elimina fragmentos menores que se puedan tomar como nuevos exones #-------------------------------------------------------------------------------------------------- gene_array_length_before=nil continue=TRUE gene_array=[] while continue cluster,gene_array=gene_array_and_compact(rebuild,cluster,reference) gene_array_length_after=length2D(gene_array) if gene_array_length_after == gene_array_length_before continue=FALSE end gene_array_length_before=gene_array_length_after end length_cluster=cluster.length # Modelado del gen #---------------------------------------------------- if rebuild && !cluster.empty? && !gene_array.empty? if cluster.length >1 cluster_comp=contig_compact(cluster) #Fusiona contigs contiguos y devuelve el array correspondiente else cluster_comp=cluster end if !cluster_comp.nil? model, model_length, seq=gene_model_cut(cluster_comp, reference) else puts cluster.first.first_hit.name+"\tGENE MODEL ABORTED" end end return model, model_length, seq, length_cluster end |
#overlap_test(model, output = TRUE) ⇒ Object
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 |
# File 'lib/gene_assembler/rebuild.rb', line 877 def overlap_test(model,output=TRUE) perc_overlap=0 overlap=model.overlap total=0 if !overlap.empty? if output print 'WARNING: overlap/s ' end overlap.each do |length_overlap| if output print (length_overlap*-3).to_s+', ' end total+=length_overlap end perc_overlap=(total*-100.0/model.first_hit.s_length).round(2) if output puts 'nt. % Total overlap '+perc_overlap.to_s end end return perc_overlap end |
#position_reference_guided(contig, last_contig, last_position_ref, reference) ⇒ Object
Si no existe overlap devuelve -1
840 841 842 843 844 845 846 847 848 849 850 |
# File 'lib/gene_assembler/rebuild.rb', line 840 def position_reference_guided(contig,last_contig,last_position_ref,reference)# Si no existe overlap devuelve -1 position_ref,ex=contig.compare(reference) if !last_position_ref.nil? if position_ref<=last_position_ref+(last_contig.first_hit.hsp_count-1) #Overlap position_overlap=(last_position_ref-position_ref).abs else #No overlap position_overlap=-1 end end return position_ref,position_overlap end |
#rebuild(options) ⇒ Object
MAIN METHOD
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
# File 'lib/gene_assembler/rebuild.rb', line 17 def rebuild() #Genera contigs modelo,gff y busca pseudogenes gff_dataset_model=Dataset.new(:mix) #Object for save info of GeneAssembler's output gff_dataset=Dataset.new(:mix) #Object for save info of GeneAssembler's output file_error=File.open(@path[:error],'w') file_web=web_header([:web],@path[:html]) sequences_hash={} gene_name=nil model=nil statistics={:genes => 0, :total_recovered => 0, :total_overlap => 0, :total_fragmentation => 0} puts "\nMODELING GENE",'*******************************************' @dataset.each_cluster{|cluster| begin if !cluster.nil? gene_name=cluster.first.first_hit.name end cluster_complete=cluster.dup model, length_model, length_cluster = iterative_modeling_gene_w_reference(cluster,@dataset.references_hash,[:rebuild],sequences_hash) #Realiza la reconstruccion del gen (alineado,descarte y montaje del gen) # GeneAssembler output (gff for Gbrowse) #-------------------------------------------------------- if !model.nil? #Format Contigs children of model gff_dataset.clr_contigs gff_dataset.transfer_contigs(cluster_complete) gff_dataset.transfer_n_contigs_def_hit_type(@dataset_uni_hsp,cluster,'pseudogene',50) #Transferir pseudogenes al report # Convertir arrays a contig y ajustar alineamiento añadiendo Ns model=correct_model(model, length_model, gff_dataset, sequences_hash) # Comprobaciones en el modelo exones=model.exones_s.length # N exones puts 'Exones: '+ exones.to_s recovered=recover_test(model) overlap=overlap_test(model) fragmentation=((length_cluster-1.00)/exones).round(2) puts 'Fragmentation: ' + fragmentation.to_s # HTML index if !file_web.nil? gene_link=html_link(model.first_hit.name, @path[:gbrowse_link]+model.first_hit.name) html_row(file_web, [gene_link, cluster.first.first_hit.s_length, exones, recovered, overlap, fragmentation]) end #Format Model for Gbrowse gff_dataset_model.clr_contigs format_model(model) #Añade la particula _gene al modelo gff_dataset_model.transfer_contigs(model) #Write write_gbrowse_gff(gff_dataset_model, gff_dataset, @path[:gff], model.name) #General statistics statistics[:genes]+=1 statistics[:total_recovered]+=recovered statistics[:total_overlap]+=overlap statistics[:total_fragmentation]+=fragmentation end rescue Exception => e gene_error(e, gene_name, file_error, cluster_complete, model) end puts '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *' } file_error.close web_body(file_web) puts "\nFINAL STATISTICS\n", 'Recovered genes: '+ statistics[:genes].to_s, 'Mean recover: ' + (statistics[:total_recovered]/statistics[:genes]).to_s, 'Mean overlap: ' + (statistics[:total_overlap]/statistics[:genes]).to_s, 'Mean fragmentation: ' + (statistics[:total_fragmentation]/statistics[:genes]).to_s write_model_fasta(sequences_hash,@path[:fasta]) end |
#recover_test(model, output = TRUE) ⇒ Object
899 900 901 902 903 904 905 906 907 908 909 |
# File 'lib/gene_assembler/rebuild.rb', line 899 def recover_test(model,output=TRUE) recovered=0 model.exones_s.each do |exon| recovered+=exon end recovered=(recovered*100.0/model.first_hit.s_length).round(2) if output puts "Recovered\t"+model.first_hit.name+"\t#{recovered}" end return recovered end |
#void_contig(contig_name, contig_length, s_length, q_beg, q_end, s_beg, s_end, contig_type, hit_type, hsp_type, single = FALSE) ⇒ Object
Genera un objeto contig con los datos proporcionados
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 |
# File 'lib/gene_assembler/rebuild.rb', line 803 def void_contig(contig_name,contig_length,s_length,q_beg,q_end,s_beg,s_end,contig_type,hit_type,hsp_type,single=FALSE) #Genera un objeto contig con los datos proporcionados contigs=[] is_contig=1 contig=nil n=0 q_beg.each_with_index do |item,ind| if item>0 ||single if contig==nil if contig_length.class.to_s=='Array' length=contig_length[n] name="#{contig_name}_#{n}" else length=contig_length name=contig_name end contig=Contig.new(name) contig.length=length contig.type=contig_type hit_v=contig.add_hit(contig_name,s_length,1,:prot) hit_v.type=hit_type end hsp_v=contig.first_hit.add_hsp(q_beg[ind], q_end[ind], s_beg[ind], s_end[ind], 0, 0, 0, 0) hsp_v.type=hsp_type end if item==0 && contig!=nil && !single||q_beg.length-1==ind if single ||!q_beg.include?(0) contigs=contig else contigs << contig end n+=1 contig=nil end end return contigs end |
#web_body(file_web) ⇒ Object
921 922 923 924 925 926 927 |
# File 'lib/gene_assembler/rebuild.rb', line 921 def web_body(file_web) if !file_web.nil? (file_web) (file_web) file_web.close end end |
#web_header(web, path) ⇒ Object
911 912 913 914 915 916 917 918 919 |
# File 'lib/gene_assembler/rebuild.rb', line 911 def web_header(web, path) file_web=nil if web file_web=File.open(path,'w') html_header(file_web,'Gene index') html_table_header(file_web,1,['Gene model name', 'Protein length', 'Num exon', '% recovered protein', '% overlapping sequence', 'Fragmentation']) end return file_web end |
#write_gbrowse_gff(gff_dataset_model, gff_dataset, path, name) ⇒ Object
937 938 939 940 941 942 |
# File 'lib/gene_assembler/rebuild.rb', line 937 def write_gbrowse_gff(gff_dataset_model, gff_dataset, path, name) gff_model=ReportGff.new(gff_dataset_model,path,'s') gff_model.create('a') gff=ReportGff.new(gff_dataset,path,'s') gff.create('a',name) end |
#write_model_fasta(sequences_hash, path) ⇒ Object
929 930 931 932 933 934 935 |
# File 'lib/gene_assembler/rebuild.rb', line 929 def write_model_fasta(sequences_hash, path) model_file=File.open(path,'w') sequences_hash.each do |model| model_file.puts '>'+model[0]+"_model\n"+model[1] end model_file.close end |