Class: Matrix
- Inherits:
-
Object
- Object
- Matrix
- Extended by:
- ConversionHelper
- Includes:
- Enumerable, ExceptionForMatrix, CoercionHelper
- Defined in:
- lib/matrix.rb,
lib/matrix/version.rb,
lib/matrix/lup_decomposition.rb,
lib/matrix/eigenvalue_decomposition.rb
Overview
The Matrix
class represents a mathematical matrix. It provides methods for creating matrices, operating on them arithmetically and algebraically, and determining their mathematical properties such as trace, rank, inverse, determinant, or eigensystem.
Defined Under Namespace
Modules: CoercionHelper, ConversionHelper Classes: EigenvalueDecomposition, LUPDecomposition, Scalar
Constant Summary collapse
- SELECTORS =
{all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
- VERSION =
"0.2.0"
Instance Attribute Summary collapse
-
#column_count ⇒ Object
(also: #column_size)
readonly
Returns the number of columns.
Class Method Summary collapse
-
.[](*rows) ⇒ Object
Creates a matrix where each argument is a row.
-
.build(row_count, column_count = row_count) ⇒ Object
Creates a matrix of size
row_count
xcolumn_count
. -
.column_vector(column) ⇒ Object
Creates a single-column matrix where the values of that column are as given in
column
. -
.columns(columns) ⇒ Object
Creates a matrix using
columns
as an array of column vectors. -
.combine(*matrices) ⇒ Object
Create a matrix by combining matrices entrywise, using the given block.
-
.diagonal(*values) ⇒ Object
Creates a matrix where the diagonal elements are composed of
values
. -
.empty(row_count = 0, column_count = 0) ⇒ Object
Creates a empty matrix of
row_count
xcolumn_count
. -
.hstack(x, *matrices) ⇒ Object
Create a matrix by stacking matrices horizontally.
-
.identity(n) ⇒ Object
(also: unit, I)
Creates an
n
byn
identity matrix. -
.row_vector(row) ⇒ Object
Creates a single-row matrix where the values of that row are as given in
row
. -
.rows(rows, copy = true) ⇒ Object
Creates a matrix where
rows
is an array of arrays, each of which is a row of the matrix. -
.scalar(n, value) ⇒ Object
Creates an
n
byn
diagonal matrix where each diagonal element isvalue
. -
.vstack(x, *matrices) ⇒ Object
Create a matrix by stacking matrices vertically.
-
.zero(row_count, column_count = row_count) ⇒ Object
Creates a zero matrix.
Instance Method Summary collapse
-
#*(m) ⇒ Object
Matrix multiplication.
-
#**(other) ⇒ Object
Matrix exponentiation.
-
#+(m) ⇒ Object
Matrix addition.
- #+@ ⇒ Object
-
#-(m) ⇒ Object
Matrix subtraction.
- #-@ ⇒ Object
-
#/(other) ⇒ Object
Matrix division (multiplication by the inverse).
-
#==(other) ⇒ Object
Returns
true
if and only if the two matrices contain equal elements. -
#[](i, j) ⇒ Object
(also: #element, #component)
Returns element (
i
,j
) of the matrix. -
#[]=(i, j, v) ⇒ Object
(also: #set_element, #set_component)
:call-seq: matrix[range, range] = matrix/element matrix[range, integer] = vector/column_matrix/element matrix[integer, range] = vector/row_matrix/element matrix[integer, integer] = element.
-
#abs ⇒ Object
Returns the absolute value elementwise.
-
#adjugate ⇒ Object
Returns the adjugate of the matrix.
-
#antisymmetric? ⇒ Boolean
(also: #skew_symmetric?)
Returns
true
if this is an antisymmetric matrix. -
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion.
-
#cofactor(row, column) ⇒ Object
Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).
-
#collect(which = :all, &block) ⇒ Object
(also: #map)
Returns a matrix that is the result of iteration of the given block over all elements of the matrix.
-
#collect!(which = :all) ⇒ Object
(also: #map!)
Invokes the given block for each element of matrix, replacing the element with the value returned by the block.
-
#column(j) ⇒ Object
Returns column vector number
j
of the matrix as a Vector (starting at 0 like an array). -
#column_vectors ⇒ Object
Returns an array of the column vectors of the matrix.
- #combine(*matrices, &block) ⇒ Object
-
#conjugate ⇒ Object
(also: #conj)
Returns the conjugate of the matrix.
-
#determinant ⇒ Object
(also: #det)
Returns the determinant of the matrix.
-
#determinant_e ⇒ Object
(also: #det_e)
deprecated; use Matrix#determinant.
-
#diagonal? ⇒ Boolean
Returns
true
if this is a diagonal matrix. -
#each(which = :all, &block) ⇒ Object
Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given.
-
#each_with_index(which = :all) ⇒ Object
Same as #each, but the row index and column index in addition to the element.
-
#eigensystem ⇒ Object
(also: #eigen)
Returns the Eigensystem of the matrix; see
EigenvalueDecomposition
. -
#elements_to_f ⇒ Object
Deprecated.
-
#elements_to_i ⇒ Object
Deprecated.
-
#elements_to_r ⇒ Object
Deprecated.
-
#empty? ⇒ Boolean
Returns
true
if this is an empty matrix, i.e. - #eql?(other) ⇒ Boolean
-
#first_minor(row, column) ⇒ Object
Returns the submatrix obtained by deleting the specified row and column.
- #freeze ⇒ Object
-
#hadamard_product(m) ⇒ Object
(also: #entrywise_product)
Hadamard product Matrix[, [3,4]].hadamard_product(Matrix[, [3,2]]) => 1 4 9 8.
-
#hash ⇒ Object
Returns a hash-code for the matrix.
-
#hermitian? ⇒ Boolean
Returns
true
if this is an hermitian matrix. -
#hstack(*matrices) ⇒ Object
Returns a new matrix resulting by stacking horizontally the receiver with the given matrices.
-
#imaginary ⇒ Object
(also: #imag)
Returns the imaginary part of the matrix.
-
#index(*args) ⇒ Object
(also: #find_index)
:call-seq: index(value, selector = :all) -> [row, column] index(selector = :all){ block } -> [row, column] index(selector = :all) -> an_enumerator.
-
#initialize(rows, column_count = rows[0].size) ⇒ Matrix
constructor
Matrix.new is private; use Matrix.rows, columns, [], etc…
-
#inspect ⇒ Object
Overrides Object#inspect.
-
#inverse ⇒ Object
(also: #inv)
Returns the inverse of the matrix.
-
#laplace_expansion(row: nil, column: nil) ⇒ Object
(also: #cofactor_expansion)
Returns the Laplace expansion along given row or column.
-
#lower_triangular? ⇒ Boolean
Returns
true
if this is a lower triangular matrix. -
#lup ⇒ Object
(also: #lup_decomposition)
Returns the LUP decomposition of the matrix; see
LUPDecomposition
. -
#minor(*param) ⇒ Object
Returns a section of the matrix.
-
#normal? ⇒ Boolean
Returns
true
if this is a normal matrix. -
#orthogonal? ⇒ Boolean
Returns
true
if this is an orthogonal matrix Raises an error if matrix is not square. -
#permutation? ⇒ Boolean
Returns
true
if this is a permutation matrix Raises an error if matrix is not square. -
#rank ⇒ Object
Returns the rank of the matrix.
-
#rank_e ⇒ Object
deprecated; use Matrix#rank.
-
#real ⇒ Object
Returns the real part of the matrix.
-
#real? ⇒ Boolean
Returns
true
if all entries of the matrix are real. -
#rect ⇒ Object
(also: #rectangular)
Returns an array containing matrices corresponding to the real and imaginary parts of the matrix.
-
#regular? ⇒ Boolean
Returns
true
if this is a regular (i.e. non-singular) matrix. -
#round(ndigits = 0) ⇒ Object
Returns a matrix with entries rounded to the given precision (see Float#round).
-
#row(i, &block) ⇒ Object
Returns row vector number
i
of the matrix as a Vector (starting at 0 like an array). -
#row_count ⇒ Object
(also: #row_size)
Returns the number of rows.
-
#row_vectors ⇒ Object
Returns an array of the row vectors of the matrix.
-
#singular? ⇒ Boolean
Returns
true
if this is a singular matrix. -
#square? ⇒ Boolean
Returns
true
if this is a square matrix. -
#symmetric? ⇒ Boolean
Returns
true
if this is a symmetric matrix. -
#to_a ⇒ Object
Returns an array of arrays that describe the rows of the matrix.
-
#to_matrix ⇒ Object
Explicit conversion to a Matrix.
-
#to_s ⇒ Object
Overrides Object#to_s.
-
#trace ⇒ Object
(also: #tr)
Returns the trace (sum of diagonal elements) of the matrix.
-
#transpose ⇒ Object
(also: #t)
Returns the transpose of the matrix.
-
#unitary? ⇒ Boolean
Returns
true
if this is a unitary matrix Raises an error if matrix is not square. -
#upper_triangular? ⇒ Boolean
Returns
true
if this is an upper triangular matrix. -
#vstack(*matrices) ⇒ Object
Returns a new matrix resulting by stacking vertically the receiver with the given matrices.
-
#zero? ⇒ Boolean
Returns
true
if this is a matrix with only zero elements.
Methods included from CoercionHelper
check_int, check_range, coerce_to, coerce_to_int, coerce_to_matrix
Constructor Details
#initialize(rows, column_count = rows[0].size) ⇒ Matrix
Matrix.new is private; use Matrix.rows, columns, [], etc… to create.
311 312 313 314 315 316 317 |
# File 'lib/matrix.rb', line 311 def initialize(rows, column_count = rows[0].size) # No checking is done at this point. rows must be an Array of Arrays. # column_count must be the size of the first row, if there is one, # otherwise it *must* be specified and can be any integer >= 0 @rows = rows @column_count = column_count end |
Instance Attribute Details
#column_count ⇒ Object (readonly) Also known as: column_size
Returns the number of columns.
445 446 447 |
# File 'lib/matrix.rb', line 445 def column_count @column_count end |
Class Method Details
.[](*rows) ⇒ Object
Creates a matrix where each argument is a row.
Matrix[ [25, 93], [-1, 66] ]
=> 25 93
-1 66
78 79 80 |
# File 'lib/matrix.rb', line 78 def Matrix.[](*rows) rows(rows, false) end |
.build(row_count, column_count = row_count) ⇒ Object
Creates a matrix of size row_count
x column_count
. It fills the values by calling the given block, passing the current row and column. Returns an enumerator if no block is given.
m = Matrix.build(2, 4) {|row, col| col - row }
=> Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
m = Matrix.build(3) { rand }
=> a 3x3 matrix with random elements
123 124 125 126 127 128 129 130 131 132 133 134 |
# File 'lib/matrix.rb', line 123 def Matrix.build(row_count, column_count = row_count) row_count = CoercionHelper.coerce_to_int(row_count) column_count = CoercionHelper.coerce_to_int(column_count) raise ArgumentError if row_count < 0 || column_count < 0 return to_enum :build, row_count, column_count unless block_given? rows = Array.new(row_count) do |i| Array.new(column_count) do |j| yield i, j end end new rows, column_count end |
.column_vector(column) ⇒ Object
Creates a single-column matrix where the values of that column are as given in column
.
Matrix.column_vector([4,5,6])
=> 4
5
6
209 210 211 212 |
# File 'lib/matrix.rb', line 209 def Matrix.column_vector(column) column = convert_to_array(column) new [column].transpose, 1 end |
.columns(columns) ⇒ Object
Creates a matrix using columns
as an array of column vectors.
Matrix.columns([[25, 93], [-1, 66]])
=> 25 -1
93 66
108 109 110 |
# File 'lib/matrix.rb', line 108 def Matrix.columns(columns) rows(columns, false).transpose end |
.combine(*matrices) ⇒ Object
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# File 'lib/matrix.rb', line 286 def Matrix.combine(*matrices) return to_enum(__method__, *matrices) unless block_given? return Matrix.empty if matrices.empty? matrices.map!(&CoercionHelper.method(:coerce_to_matrix)) x = matrices.first matrices.each do |m| raise ErrDimensionMismatch unless x.row_count == m.row_count && x.column_count == m.column_count end rows = Array.new(x.row_count) do |i| Array.new(x.column_count) do |j| yield matrices.map{|m| m[i,j]} end end new rows, x.column_count end |
.diagonal(*values) ⇒ Object
Creates a matrix where the diagonal elements are composed of values
.
Matrix.diagonal(9, 5, -3)
=> 9 0 0
0 5 0
0 0 -3
143 144 145 146 147 148 149 150 151 152 |
# File 'lib/matrix.rb', line 143 def Matrix.diagonal(*values) size = values.size return Matrix.empty if size == 0 rows = Array.new(size) {|j| row = Array.new(size, 0) row[j] = values[j] row } new rows end |
.empty(row_count = 0, column_count = 0) ⇒ Object
Creates a empty matrix of row_count
x column_count
. At least one of row_count
or column_count
must be 0.
m = Matrix.empty(2, 0)
m == Matrix[ [], [] ]
=> true
n = Matrix.empty(0, 3)
n == Matrix.columns([ [], [], [] ])
=> true
m * n
=> Matrix[[0, 0, 0], [0, 0, 0]]
227 228 229 230 231 232 |
# File 'lib/matrix.rb', line 227 def Matrix.empty(row_count = 0, column_count = 0) raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0 raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0 new([[]]*row_count, column_count) end |
.hstack(x, *matrices) ⇒ Object
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# File 'lib/matrix.rb', line 262 def Matrix.hstack(x, *matrices) x = CoercionHelper.coerce_to_matrix(x) result = x.send(:rows).map(&:dup) total_column_count = x.column_count matrices.each do |m| m = CoercionHelper.coerce_to_matrix(m) if m.row_count != x.row_count raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}" end result.each_with_index do |row, i| row.concat m.send(:rows)[i] end total_column_count += m.column_count end new result, total_column_count end |
.identity(n) ⇒ Object Also known as: unit, I
Creates an n
by n
identity matrix.
Matrix.identity(2)
=> 1 0
0 1
171 172 173 |
# File 'lib/matrix.rb', line 171 def Matrix.identity(n) scalar(n, 1) end |
.row_vector(row) ⇒ Object
Creates a single-row matrix where the values of that row are as given in row
.
Matrix.row_vector([4,5,6])
=> 4 5 6
196 197 198 199 |
# File 'lib/matrix.rb', line 196 def Matrix.row_vector(row) row = convert_to_array(row) new [row] end |
.rows(rows, copy = true) ⇒ Object
Creates a matrix where rows
is an array of arrays, each of which is a row of the matrix. If the optional argument copy
is false, use the given arrays as the internal structure of the matrix without copying.
Matrix.rows([[25, 93], [-1, 66]])
=> 25 93
-1 66
90 91 92 93 94 95 96 97 98 99 100 |
# File 'lib/matrix.rb', line 90 def Matrix.rows(rows, copy = true) rows = convert_to_array(rows, copy) rows.map! do |row| convert_to_array(row, copy) end size = (rows[0] || []).size rows.each do |row| raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size end new rows, size end |
.scalar(n, value) ⇒ Object
Creates an n
by n
diagonal matrix where each diagonal element is value
.
Matrix.scalar(2, 5)
=> 5 0
0 5
161 162 163 |
# File 'lib/matrix.rb', line 161 def Matrix.scalar(n, value) diagonal(*Array.new(n, value)) end |
.vstack(x, *matrices) ⇒ Object
241 242 243 244 245 246 247 248 249 250 251 252 |
# File 'lib/matrix.rb', line 241 def Matrix.vstack(x, *matrices) x = CoercionHelper.coerce_to_matrix(x) result = x.send(:rows).map(&:dup) matrices.each do |m| m = CoercionHelper.coerce_to_matrix(m) if m.column_count != x.column_count raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}" end result.concat(m.send(:rows)) end new result, x.column_count end |
.zero(row_count, column_count = row_count) ⇒ Object
Creates a zero matrix.
Matrix.zero(2)
=> 0 0
0 0
185 186 187 188 |
# File 'lib/matrix.rb', line 185 def Matrix.zero(row_count, column_count = row_count) rows = Array.new(row_count){Array.new(column_count, 0)} new rows, column_count end |
Instance Method Details
#*(m) ⇒ Object
Matrix multiplication.
Matrix[[2,4], [6,8]] * Matrix.identity(2)
=> 2 4
6 8
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 |
# File 'lib/matrix.rb', line 1045 def *(m) # m is matrix or vector or number case(m) when Numeric rows = @rows.collect {|row| row.collect {|e| e * m } } return new_matrix rows, column_count when Vector m = self.class.column_vector(m) r = self * m return r.column(0) when Matrix raise ErrDimensionMismatch if column_count != m.row_count rows = Array.new(row_count) {|i| Array.new(m.column_count) {|j| (0 ... column_count).inject(0) do |vij, k| vij + self[i, k] * m[k, j] end } } return new_matrix rows, m.column_count else return apply_through_coercion(m, __method__) end end |
#**(other) ⇒ Object
Matrix exponentiation. Equivalent to multiplying the matrix by itself N times. Non integer exponents will be handled by diagonalizing the matrix.
Matrix[[7,6], [3,9]] ** 2
=> 67 96
48 99
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 |
# File 'lib/matrix.rb', line 1222 def **(other) case other when Integer x = self if other <= 0 x = self.inverse return self.class.identity(self.column_count) if other == 0 other = -other end z = nil loop do z = z ? z * x : x if other[0] == 1 return z if (other >>= 1).zero? x *= x end when Numeric v, d, v_inv = eigensystem v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv else raise ErrOperationNotDefined, ["**", self.class, other.class] end end |
#+(m) ⇒ Object
Matrix addition.
Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
=> 6 0
-4 12
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 |
# File 'lib/matrix.rb', line 1078 def +(m) case m when Numeric raise ErrOperationNotDefined, ["+", self.class, m.class] when Vector m = self.class.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count rows = Array.new(row_count) {|i| Array.new(column_count) {|j| self[i, j] + m[i, j] } } new_matrix rows, column_count end |
#+@ ⇒ Object
1245 1246 1247 |
# File 'lib/matrix.rb', line 1245 def +@ self end |
#-(m) ⇒ Object
Matrix subtraction.
Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
=> -8 2
8 1
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 |
# File 'lib/matrix.rb', line 1105 def -(m) case m when Numeric raise ErrOperationNotDefined, ["-", self.class, m.class] when Vector m = self.class.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count rows = Array.new(row_count) {|i| Array.new(column_count) {|j| self[i, j] - m[i, j] } } new_matrix rows, column_count end |
#-@ ⇒ Object
1249 1250 1251 |
# File 'lib/matrix.rb', line 1249 def -@ collect {|e| -e } end |
#/(other) ⇒ Object
Matrix division (multiplication by the inverse).
Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
=> -7 1
-3 -6
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 |
# File 'lib/matrix.rb', line 1132 def /(other) case other when Numeric rows = @rows.collect {|row| row.collect {|e| e / other } } return new_matrix rows, column_count when Matrix return self * other.inverse else return apply_through_coercion(other, __method__) end end |
#==(other) ⇒ Object
Returns true
if and only if the two matrices contain equal elements.
1008 1009 1010 1011 1012 |
# File 'lib/matrix.rb', line 1008 def ==(other) return false unless Matrix === other && column_count == other.column_count # necessary for empty matrices rows == other.rows end |
#[](i, j) ⇒ Object Also known as: element, component
Returns element (i
,j
) of the matrix. That is: row i
, column j
.
326 327 328 |
# File 'lib/matrix.rb', line 326 def [](i, j) @rows.fetch(i){return nil}[j] end |
#[]=(i, j, v) ⇒ Object Also known as: set_element, set_component
:call-seq:
matrix[range, range] = matrix/element
matrix[range, integer] = vector/column_matrix/element
matrix[integer, range] = vector/row_matrix/element
matrix[integer, integer] = element
Set element or elements of matrix.
340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# File 'lib/matrix.rb', line 340 def []=(i, j, v) raise FrozenError, "can't modify frozen Matrix" if frozen? rows = check_range(i, :row) or row = check_int(i, :row) columns = check_range(j, :column) or column = check_int(j, :column) if rows && columns set_row_and_col_range(rows, columns, v) elsif rows set_row_range(rows, column, v) elsif columns set_col_range(row, columns, v) else set_value(row, column, v) end end |
#abs ⇒ Object
Returns the absolute value elementwise
1256 1257 1258 |
# File 'lib/matrix.rb', line 1256 def abs collect(&:abs) end |
#adjugate ⇒ Object
Returns the adjugate of the matrix.
Matrix[ [7,6],[3,9] ].adjugate
=> 9 -6
-3 7
781 782 783 784 785 786 |
# File 'lib/matrix.rb', line 781 def adjugate raise ErrDimensionMismatch unless square? Matrix.build(row_count, column_count) do |row, column| cofactor(column, row) end end |
#antisymmetric? ⇒ Boolean Also known as: skew_symmetric?
Returns true
if this is an antisymmetric matrix. Raises an error if matrix is not square.
960 961 962 963 964 965 966 |
# File 'lib/matrix.rb', line 960 def antisymmetric? raise ErrDimensionMismatch unless square? each_with_index(:upper) do |e, row, col| return false unless e == -rows[col][row] end true end |
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator. See also Numeric#coerce.
1565 1566 1567 1568 1569 1570 1571 1572 |
# File 'lib/matrix.rb', line 1565 def coerce(other) case other when Numeric return Scalar.new(other), self else raise TypeError, "#{self.class} can't be coerced into #{other.class}" end end |
#cofactor(row, column) ⇒ Object
Returns the (row, column) cofactor which is obtained by multiplying the first minor by (-1)**(row + column).
Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
=> -108
766 767 768 769 770 771 772 |
# File 'lib/matrix.rb', line 766 def cofactor(row, column) raise RuntimeError, "cofactor of empty matrix is not defined" if empty? raise ErrDimensionMismatch unless square? det_of_minor = first_minor(row, column).determinant det_of_minor * (-1) ** (row + column) end |
#collect(which = :all, &block) ⇒ Object Also known as: map
Returns a matrix that is the result of iteration of the given block over all elements of the matrix. Elements can be restricted by passing an argument:
-
:all (default): yields all elements
-
:diagonal: yields only elements on the diagonal
-
:off_diagonal: yields all elements except on the diagonal
-
:lower: yields only elements on or below the diagonal
-
:strict_lower: yields only elements below the diagonal
-
:strict_upper: yields only elements above the diagonal
-
:upper: yields only elements on or above the diagonal Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
=> 1 4 9 16
497 498 499 500 |
# File 'lib/matrix.rb', line 497 def collect(which = :all, &block) # :yield: e return to_enum(:collect, which) unless block_given? dup.collect!(which, &block) end |
#collect!(which = :all) ⇒ Object Also known as: map!
Invokes the given block for each element of matrix, replacing the element with the value returned by the block. Elements can be restricted by passing an argument:
-
:all (default): yields all elements
-
:diagonal: yields only elements on the diagonal
-
:off_diagonal: yields all elements except on the diagonal
-
:lower: yields only elements on or below the diagonal
-
:strict_lower: yields only elements below the diagonal
-
:strict_upper: yields only elements above the diagonal
-
:upper: yields only elements on or above the diagonal
515 516 517 518 519 |
# File 'lib/matrix.rb', line 515 def collect!(which = :all) return to_enum(:collect!, which) unless block_given? raise FrozenError, "can't modify frozen Matrix" if frozen? each_with_index(which){ |e, row_index, col_index| @rows[row_index][col_index] = yield e } end |
#column(j) ⇒ Object
Returns column vector number j
of the matrix as a Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
# File 'lib/matrix.rb', line 466 def column(j) # :yield: e if block_given? return self if j >= column_count || j < -column_count row_count.times do |i| yield @rows[i][j] end self else return nil if j >= column_count || j < -column_count col = Array.new(row_count) {|i| @rows[i][j] } Vector.elements(col, false) end end |
#column_vectors ⇒ Object
Returns an array of the column vectors of the matrix. See Vector.
1586 1587 1588 1589 1590 |
# File 'lib/matrix.rb', line 1586 def column_vectors Array.new(column_count) {|i| column(i) } end |
#combine(*matrices, &block) ⇒ Object
304 305 306 |
# File 'lib/matrix.rb', line 304 def combine(*matrices, &block) Matrix.combine(self, *matrices, &block) end |
#conjugate ⇒ Object Also known as: conj
Returns the conjugate of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
=> 1-2i -i 0
1 2 3
1511 1512 1513 |
# File 'lib/matrix.rb', line 1511 def conjugate collect(&:conjugate) end |
#determinant ⇒ Object Also known as: det
Returns the determinant of the matrix.
Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].determinant
=> 45
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 |
# File 'lib/matrix.rb', line 1274 def determinant raise ErrDimensionMismatch unless square? m = @rows case row_count # Up to 4x4, give result using Laplacian expansion by minors. # This will typically be faster, as well as giving good results # in case of Floats when 0 +1 when 1 + m[0][0] when 2 + m[0][0] * m[1][1] - m[0][1] * m[1][0] when 3 m0, m1, m2 = m + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \ - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \ + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0] when 4 m0, m1, m2, m3 = m + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \ - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \ + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \ - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \ + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \ - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \ + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \ - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \ + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \ - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \ + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \ - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0] else # For bigger matrices, use an efficient and general algorithm. # Currently, we use the Gauss-Bareiss algorithm end end |
#determinant_e ⇒ Object Also known as: det_e
deprecated; use Matrix#determinant
1355 1356 1357 1358 |
# File 'lib/matrix.rb', line 1355 def determinant_e warn "Matrix#determinant_e is deprecated; use #determinant", uplevel: 1 determinant end |
#diagonal? ⇒ Boolean
Returns true
if this is a diagonal matrix. Raises an error if matrix is not square.
827 828 829 830 |
# File 'lib/matrix.rb', line 827 def diagonal? raise ErrDimensionMismatch unless square? each(:off_diagonal).all?(&:zero?) end |
#each(which = :all, &block) ⇒ Object
Yields all elements of the matrix, starting with those of the first row, or returns an Enumerator if no block given. Elements can be restricted by passing an argument:
-
:all (default): yields all elements
-
:diagonal: yields only elements on the diagonal
-
:off_diagonal: yields all elements except on the diagonal
-
:lower: yields only elements on or below the diagonal
-
:strict_lower: yields only elements below the diagonal
-
:strict_upper: yields only elements above the diagonal
-
:upper: yields only elements on or above the diagonal
Matrix[ [1,2], [3,4] ].each { |e| puts e }
# => prints the numbers 1 to 4
Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
# File 'lib/matrix.rb', line 544 def each(which = :all, &block) # :yield: e return to_enum :each, which unless block_given? last = column_count - 1 case which when :all @rows.each do |row| row.each(&block) end when :diagonal @rows.each_with_index do |row, row_index| yield row.fetch(row_index){return self} end when :off_diagonal @rows.each_with_index do |row, row_index| column_count.times do |col_index| yield row[col_index] unless row_index == col_index end end when :lower @rows.each_with_index do |row, row_index| 0.upto([row_index, last].min) do |col_index| yield row[col_index] end end when :strict_lower @rows.each_with_index do |row, row_index| [row_index, column_count].min.times do |col_index| yield row[col_index] end end when :strict_upper @rows.each_with_index do |row, row_index| (row_index+1).upto(last) do |col_index| yield row[col_index] end end when :upper @rows.each_with_index do |row, row_index| row_index.upto(last) do |col_index| yield row[col_index] end end else raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper" end self end |
#each_with_index(which = :all) ⇒ Object
Same as #each, but the row index and column index in addition to the element
Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
puts "#{e} at #{row}, #{col}"
end
# => Prints:
# 1 at 0, 0
# 2 at 0, 1
# 3 at 1, 0
# 4 at 1, 1
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
# File 'lib/matrix.rb', line 604 def each_with_index(which = :all) # :yield: e, row, column return to_enum :each_with_index, which unless block_given? last = column_count - 1 case which when :all @rows.each_with_index do |row, row_index| row.each_with_index do |e, col_index| yield e, row_index, col_index end end when :diagonal @rows.each_with_index do |row, row_index| yield row.fetch(row_index){return self}, row_index, row_index end when :off_diagonal @rows.each_with_index do |row, row_index| column_count.times do |col_index| yield row[col_index], row_index, col_index unless row_index == col_index end end when :lower @rows.each_with_index do |row, row_index| 0.upto([row_index, last].min) do |col_index| yield row[col_index], row_index, col_index end end when :strict_lower @rows.each_with_index do |row, row_index| [row_index, column_count].min.times do |col_index| yield row[col_index], row_index, col_index end end when :strict_upper @rows.each_with_index do |row, row_index| (row_index+1).upto(last) do |col_index| yield row[col_index], row_index, col_index end end when :upper @rows.each_with_index do |row, row_index| row_index.upto(last) do |col_index| yield row[col_index], row_index, col_index end end else raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper" end self end |
#eigensystem ⇒ Object Also known as: eigen
Returns the Eigensystem of the matrix; see EigenvalueDecomposition
.
m = Matrix[[1, 2], [3, 4]]
v, d, v_inv = m.eigensystem
d.diagonal? # => true
v.inv == v_inv # => true
(v * d * v_inv).round(5) == m # => true
1478 1479 1480 |
# File 'lib/matrix.rb', line 1478 def eigensystem EigenvalueDecomposition.new(self) end |
#elements_to_f ⇒ Object
Deprecated.
Use map(&:to_f)
1609 1610 1611 1612 |
# File 'lib/matrix.rb', line 1609 def elements_to_f warn "Matrix#elements_to_f is deprecated, use map(&:to_f)", uplevel: 1 map(&:to_f) end |
#elements_to_i ⇒ Object
Deprecated.
Use map(&:to_i)
1617 1618 1619 1620 |
# File 'lib/matrix.rb', line 1617 def elements_to_i warn "Matrix#elements_to_i is deprecated, use map(&:to_i)", uplevel: 1 map(&:to_i) end |
#elements_to_r ⇒ Object
Deprecated.
Use map(&:to_r)
1625 1626 1627 1628 |
# File 'lib/matrix.rb', line 1625 def elements_to_r warn "Matrix#elements_to_r is deprecated, use map(&:to_r)", uplevel: 1 map(&:to_r) end |
#empty? ⇒ Boolean
Returns true
if this is an empty matrix, i.e. if the number of rows or the number of columns is 0.
836 837 838 |
# File 'lib/matrix.rb', line 836 def empty? column_count == 0 || row_count == 0 end |
#eql?(other) ⇒ Boolean
1014 1015 1016 1017 1018 |
# File 'lib/matrix.rb', line 1014 def eql?(other) return false unless Matrix === other && column_count == other.column_count # necessary for empty matrices rows.eql? other.rows end |
#first_minor(row, column) ⇒ Object
Returns the submatrix obtained by deleting the specified row and column.
Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
=> 9 0 0
0 0 0
0 0 4
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
# File 'lib/matrix.rb', line 739 def first_minor(row, column) raise RuntimeError, "first_minor of empty matrix is not defined" if empty? unless 0 <= row && row < row_count raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})" end unless 0 <= column && column < column_count raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})" end arrays = to_a arrays.delete_at(row) arrays.each do |array| array.delete_at(column) end new_matrix arrays, column_count - 1 end |
#freeze ⇒ Object
523 524 525 526 |
# File 'lib/matrix.rb', line 523 def freeze @rows.freeze super end |
#hadamard_product(m) ⇒ Object Also known as: entrywise_product
Hadamard product
Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]])
=> 1 4
9 8
1152 1153 1154 |
# File 'lib/matrix.rb', line 1152 def hadamard_product(m) combine(m){|a, b| a * b} end |
#hash ⇒ Object
Returns a hash-code for the matrix.
1031 1032 1033 |
# File 'lib/matrix.rb', line 1031 def hash @rows.hash end |
#hermitian? ⇒ Boolean
Returns true
if this is an hermitian matrix. Raises an error if matrix is not square.
844 845 846 847 848 849 |
# File 'lib/matrix.rb', line 844 def hermitian? raise ErrDimensionMismatch unless square? each_with_index(:upper).all? do |e, row, col| e == rows[col][row].conj end end |
#hstack(*matrices) ⇒ Object
1369 1370 1371 |
# File 'lib/matrix.rb', line 1369 def hstack(*matrices) self.class.hstack(self, *matrices) end |
#imaginary ⇒ Object Also known as: imag
Returns the imaginary part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
=> 2i i 0
0 0 0
1525 1526 1527 |
# File 'lib/matrix.rb', line 1525 def imaginary collect(&:imaginary) end |
#index(*args) ⇒ Object Also known as: find_index
:call-seq:
index(value, selector = :all) -> [row, column]
index(selector = :all){ block } -> [row, column]
index(selector = :all) -> an_enumerator
The index method is specialized to return the index as [row, column] It also accepts an optional selector
argument, see #each for details.
Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
# File 'lib/matrix.rb', line 667 def index(*args) raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2 which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all return to_enum :find_index, which, *args unless block_given? || args.size == 1 if args.size == 1 value = args.first each_with_index(which) do |e, row_index, col_index| return row_index, col_index if e == value end else each_with_index(which) do |e, row_index, col_index| return row_index, col_index if yield e end end nil end |
#inspect ⇒ Object
Overrides Object#inspect
1650 1651 1652 1653 1654 1655 1656 |
# File 'lib/matrix.rb', line 1650 def inspect if empty? "#{self.class}.empty(#{row_count}, #{column_count})" else "#{self.class}#{@rows.inspect}" end end |
#inverse ⇒ Object Also known as: inv
Returns the inverse of the matrix.
Matrix[[-1, -1], [0, -1]].inverse
=> -1 1
0 -1
1163 1164 1165 1166 |
# File 'lib/matrix.rb', line 1163 def inverse raise ErrDimensionMismatch unless square? self.class.I(row_count).send(:inverse_from, self) end |
#laplace_expansion(row: nil, column: nil) ⇒ Object Also known as: cofactor_expansion
Returns the Laplace expansion along given row or column.
Matrix[[7,6], [3,9]].laplace_expansion(column: 1)
=> 45
Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0)
=> Vector[3, -2]
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
# File 'lib/matrix.rb', line 798 def laplace_expansion(row: nil, column: nil) num = row || column if !num || (row && column) raise ArgumentError, "exactly one the row or column arguments must be specified" end raise ErrDimensionMismatch unless square? raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty? unless 0 <= num && num < row_count raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})" end send(row ? :row : :column, num).map.with_index { |e, k| e * cofactor(*(row ? [num, k] : [k,num])) }.inject(:+) end |
#lower_triangular? ⇒ Boolean
Returns true
if this is a lower triangular matrix.
854 855 856 |
# File 'lib/matrix.rb', line 854 def lower_triangular? each(:strict_upper).all?(&:zero?) end |
#lup ⇒ Object Also known as: lup_decomposition
Returns the LUP decomposition of the matrix; see LUPDecomposition
.
a = Matrix[[1, 2], [3, 4]]
l, u, p = a.lup
l.lower_triangular? # => true
u.upper_triangular? # => true
p.permutation? # => true
l * u == p * a # => true
a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
1493 1494 1495 |
# File 'lib/matrix.rb', line 1493 def lup LUPDecomposition.new(self) end |
#minor(*param) ⇒ Object
Returns a section of the matrix. The parameters are either:
-
start_row, nrows, start_col, ncols; OR
-
row_range, col_range
Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
=> 9 0 0
0 5 0
Like Array#[], negative indices count backward from the end of the row or column (-1 is the last element). Returns nil if the starting row or column is greater than row_count or column_count respectively.
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
# File 'lib/matrix.rb', line 698 def minor(*param) case param.size when 2 row_range, col_range = param from_row = row_range.first from_row += row_count if from_row < 0 to_row = row_range.end to_row += row_count if to_row < 0 to_row += 1 unless row_range.exclude_end? size_row = to_row - from_row from_col = col_range.first from_col += column_count if from_col < 0 to_col = col_range.end to_col += column_count if to_col < 0 to_col += 1 unless col_range.exclude_end? size_col = to_col - from_col when 4 from_row, size_row, from_col, size_col = param return nil if size_row < 0 || size_col < 0 from_row += row_count if from_row < 0 from_col += column_count if from_col < 0 else raise ArgumentError, param.inspect end return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0 rows = @rows[from_row, size_row].collect{|row| row[from_col, size_col] } new_matrix rows, [column_count - from_col, size_col].min end |
#normal? ⇒ Boolean
Returns true
if this is a normal matrix. Raises an error if matrix is not square.
862 863 864 865 866 867 868 869 870 871 872 873 874 |
# File 'lib/matrix.rb', line 862 def normal? raise ErrDimensionMismatch unless square? rows.each_with_index do |row_i, i| rows.each_with_index do |row_j, j| s = 0 rows.each_with_index do |row_k, k| s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j] end return false unless s == 0 end end true end |
#orthogonal? ⇒ Boolean
Returns true
if this is an orthogonal matrix Raises an error if matrix is not square.
880 881 882 883 884 885 886 887 888 889 890 891 892 |
# File 'lib/matrix.rb', line 880 def orthogonal? raise ErrDimensionMismatch unless square? rows.each_with_index do |row, i| column_count.times do |j| s = 0 row_count.times do |k| s += row[k] * rows[k][j] end return false unless s == (i == j ? 1 : 0) end end true end |
#permutation? ⇒ Boolean
Returns true
if this is a permutation matrix Raises an error if matrix is not square.
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 |
# File 'lib/matrix.rb', line 898 def permutation? raise ErrDimensionMismatch unless square? cols = Array.new(column_count) rows.each_with_index do |row, i| found = false row.each_with_index do |e, j| if e == 1 return false if found || cols[j] found = cols[j] = true elsif e != 0 return false end end return false unless found end true end |
#rank ⇒ Object
Returns the rank of the matrix. Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.
Matrix[[7,6], [3,9]].rank
=> 2
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 |
# File 'lib/matrix.rb', line 1382 def rank # We currently use Bareiss' multistep integer-preserving gaussian elimination # (see comments on determinant) a = to_a last_column = column_count - 1 last_row = row_count - 1 pivot_row = 0 previous_pivot = 1 0.upto(last_column) do |k| switch_row = (pivot_row .. last_row).find {|row| a[row][k] != 0 } if switch_row a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row pivot = a[pivot_row][k] (pivot_row+1).upto(last_row) do |i| ai = a[i] (k+1).upto(last_column) do |j| ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot end end pivot_row += 1 previous_pivot = pivot end end pivot_row end |
#rank_e ⇒ Object
deprecated; use Matrix#rank
1413 1414 1415 1416 |
# File 'lib/matrix.rb', line 1413 def rank_e warn "Matrix#rank_e is deprecated; use #rank", uplevel: 1 rank end |
#real ⇒ Object
Returns the real part of the matrix.
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
=> 1+2i i 0
1 2 3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
=> 1 0 0
1 2 3
1539 1540 1541 |
# File 'lib/matrix.rb', line 1539 def real collect(&:real) end |
#real? ⇒ Boolean
Returns true
if all entries of the matrix are real.
919 920 921 |
# File 'lib/matrix.rb', line 919 def real? all?(&:real?) end |
#rect ⇒ Object Also known as: rectangular
Returns an array containing matrices corresponding to the real and imaginary parts of the matrix
m.rect == [m.real, m.imag] # ==> true for all matrices m
1549 1550 1551 |
# File 'lib/matrix.rb', line 1549 def rect [real, imag] end |
#regular? ⇒ Boolean
Returns true
if this is a regular (i.e. non-singular) matrix.
926 927 928 |
# File 'lib/matrix.rb', line 926 def regular? not singular? end |
#round(ndigits = 0) ⇒ Object
Returns a matrix with entries rounded to the given precision (see Float#round)
1421 1422 1423 |
# File 'lib/matrix.rb', line 1421 def round(ndigits=0) map{|e| e.round(ndigits)} end |
#row(i, &block) ⇒ Object
Returns row vector number i
of the matrix as a Vector (starting at 0 like an array). When a block is given, the elements of that vector are iterated.
452 453 454 455 456 457 458 459 |
# File 'lib/matrix.rb', line 452 def row(i, &block) # :yield: e if block_given? @rows.fetch(i){return self}.each(&block) self else Vector.elements(@rows.fetch(i){return nil}) end end |
#row_count ⇒ Object Also known as: row_size
Returns the number of rows.
437 438 439 |
# File 'lib/matrix.rb', line 437 def row_count @rows.size end |
#row_vectors ⇒ Object
Returns an array of the row vectors of the matrix. See Vector.
1577 1578 1579 1580 1581 |
# File 'lib/matrix.rb', line 1577 def row_vectors Array.new(row_count) {|i| row(i) } end |
#singular? ⇒ Boolean
Returns true
if this is a singular matrix.
933 934 935 |
# File 'lib/matrix.rb', line 933 def singular? determinant == 0 end |
#square? ⇒ Boolean
Returns true
if this is a square matrix.
940 941 942 |
# File 'lib/matrix.rb', line 940 def square? column_count == row_count end |
#symmetric? ⇒ Boolean
Returns true
if this is a symmetric matrix. Raises an error if matrix is not square.
948 949 950 951 952 953 954 |
# File 'lib/matrix.rb', line 948 def symmetric? raise ErrDimensionMismatch unless square? each_with_index(:strict_upper) do |e, row, col| return false if e != rows[col][row] end true end |
#to_a ⇒ Object
Returns an array of arrays that describe the rows of the matrix.
1602 1603 1604 |
# File 'lib/matrix.rb', line 1602 def to_a @rows.collect(&:dup) end |
#to_matrix ⇒ Object
Explicit conversion to a Matrix. Returns self
1595 1596 1597 |
# File 'lib/matrix.rb', line 1595 def to_matrix self end |
#to_s ⇒ Object
Overrides Object#to_s
1637 1638 1639 1640 1641 1642 1643 1644 1645 |
# File 'lib/matrix.rb', line 1637 def to_s if empty? "#{self.class}.empty(#{row_count}, #{column_count})" else "#{self.class}[" + @rows.collect{|row| "[" + row.collect{|e| e.to_s}.join(", ") + "]" }.join(", ")+"]" end end |
#trace ⇒ Object Also known as: tr
Returns the trace (sum of diagonal elements) of the matrix.
Matrix[[7,6], [3,9]].trace
=> 16
1430 1431 1432 1433 1434 1435 |
# File 'lib/matrix.rb', line 1430 def trace raise ErrDimensionMismatch unless square? (0...column_count).inject(0) do |tr, i| tr + @rows[i][i] end end |
#transpose ⇒ Object Also known as: t
Returns the transpose of the matrix.
Matrix[[1,2], [3,4], [5,6]]
=> 1 2
3 4
5 6
Matrix[[1,2], [3,4], [5,6]].transpose
=> 1 3 5
2 4 6
1448 1449 1450 1451 |
# File 'lib/matrix.rb', line 1448 def transpose return self.class.empty(column_count, 0) if row_count.zero? new_matrix @rows.transpose, row_count end |
#unitary? ⇒ Boolean
Returns true
if this is a unitary matrix Raises an error if matrix is not square.
973 974 975 976 977 978 979 980 981 982 983 984 985 |
# File 'lib/matrix.rb', line 973 def unitary? raise ErrDimensionMismatch unless square? rows.each_with_index do |row, i| column_count.times do |j| s = 0 row_count.times do |k| s += row[k].conj * rows[k][j] end return false unless s == (i == j ? 1 : 0) end end true end |
#upper_triangular? ⇒ Boolean
Returns true
if this is an upper triangular matrix.
990 991 992 |
# File 'lib/matrix.rb', line 990 def upper_triangular? each(:strict_lower).all?(&:zero?) end |
#vstack(*matrices) ⇒ Object
1462 1463 1464 |
# File 'lib/matrix.rb', line 1462 def vstack(*matrices) self.class.vstack(self, *matrices) end |
#zero? ⇒ Boolean
Returns true
if this is a matrix with only zero elements
997 998 999 |
# File 'lib/matrix.rb', line 997 def zero? all?(&:zero?) end |