Module: Math
- Defined in:
- lib/mathn.rb
Overview
When mathn is required, the Math module changes as follows:
Standard Math module behaviour:
Math.sqrt(4/9) # => 0.0
Math.sqrt(4.0/9.0) # => 0.666666666666667
Math.sqrt(- 4/9) # => Errno::EDOM: Numerical argument out of domain - sqrt
After require ‘mathn’, this is changed to:
require 'mathn'
Math.sqrt(4/9) # => 2/3
Math.sqrt(4.0/9.0) # => 0.666666666666667
Math.sqrt(- 4/9) # => Complex(0, 2/3)
Class Method Summary collapse
-
.rsqrt(a) ⇒ Object
Compute square root of a non negative number.
-
.sqrt(a) ⇒ Object
Computes the square root of
a
.
Class Method Details
.rsqrt(a) ⇒ Object
Compute square root of a non negative number. This method is internally used by Math.sqrt
.
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
# File 'lib/mathn.rb', line 255 def rsqrt(a) if a.kind_of?(Float) sqrt!(a) elsif a.kind_of?(Rational) rsqrt(a.numerator)/rsqrt(a.denominator) else src = a max = 2 ** 32 byte_a = [src & 0xffffffff] # ruby's bug while (src >= max) and (src >>= 32) byte_a.unshift src & 0xffffffff end answer = 0 main = 0 side = 0 for elm in byte_a main = (main << 32) + elm side <<= 16 if answer != 0 if main * 4 < side * side applo = main.div(side) else applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1 end else applo = sqrt!(main).to_i + 1 end while (x = (side + applo) * applo) > main applo -= 1 end main -= x answer = (answer << 16) + applo side += applo * 2 end if main == 0 answer else sqrt!(a) end end end |
.sqrt(a) ⇒ Object
Computes the square root of a
. It makes use of Complex and Rational to have no rounding errors if possible.
Math.sqrt(4/9) # => 2/3
Math.sqrt(- 4/9) # => Complex(0, 2/3)
Math.sqrt(4.0/9.0) # => 0.666666666666667
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# File 'lib/mathn.rb', line 226 def sqrt(a) if a.kind_of?(Complex) abs = sqrt(a.real*a.real + a.imag*a.imag) # if not abs.kind_of?(Rational) # return a**Rational(1,2) # end x = sqrt((a.real + abs)/Rational(2)) y = sqrt((-a.real + abs)/Rational(2)) # if !(x.kind_of?(Rational) and y.kind_of?(Rational)) # return a**Rational(1,2) # end if a.imag >= 0 Complex(x, y) else Complex(x, -y) end elsif a.respond_to?(:nan?) and a.nan? a elsif a >= 0 rsqrt(a) else Complex(0,rsqrt(-a)) end end |