Class: Object
Overview
Object is the default root of all Ruby objects. Object inherits from BasicObject which allows creating alternate object hierarchies. Methods on Object are available to all classes unless explicitly overridden.
Object mixes in the Kernel module, making the built-in kernel functions globally accessible. Although the instance methods of Object are defined by the Kernel module, we have chosen to document them here for clarity.
When referencing constants in classes inheriting from Object you do not need to use the full namespace. For example, referencing File
inside YourClass
will find the top-level File class.
In the descriptions of Object’s methods, the parameter symbol refers to a symbol, which is either a quoted string or a Symbol (such as :name
).
What’s Here
First, what’s elsewhere. Class Object:
-
Inherits from class BasicObject.
-
Includes module Kernel.
Here, class Object provides methods for:
Querying
-
#!~: Returns
true
ifself
does not match the given object, otherwisefalse
. -
#<=>: Returns 0 if
self
and the given objectobject
are the same object, or ifself == object
; otherwise returnsnil
. -
#===: Implements case equality, effectively the same as calling #==.
-
#eql?: Implements hash equality, effectively the same as calling #==.
-
#kind_of? (aliased as #is_a?): Returns whether given argument is an ancestor of the singleton class of
self
. -
#instance_of?: Returns whether
self
is an instance of the given class. -
#instance_variable_defined?: Returns whether the given instance variable is defined in
self
. -
#method: Returns the Method object for the given method in
self
. -
#methods: Returns an array of symbol names of public and protected methods in
self
. -
#nil?: Returns
false
. (Onlynil
respondstrue
to methodnil?
.) -
#object_id: Returns an integer corresponding to
self
that is unique for the current process -
#private_methods: Returns an array of the symbol names of the private methods in
self
. -
#protected_methods: Returns an array of the symbol names of the protected methods in
self
. -
#public_method: Returns the Method object for the given public method in
self
. -
#public_methods: Returns an array of the symbol names of the public methods in
self
. -
#respond_to?: Returns whether
self
responds to the given method. -
#singleton_class: Returns the singleton class of
self
. -
#singleton_method: Returns the Method object for the given singleton method in
self
. -
#singleton_methods: Returns an array of the symbol names of the singleton methods in
self
. -
#define_singleton_method: Defines a singleton method in
self
for the given symbol method-name and block or proc. -
#extend: Includes the given modules in the singleton class of
self
. -
#public_send: Calls the given public method in
self
with the given argument. -
#send: Calls the given method in
self
with the given argument.
Instance Variables
-
#instance_variable_get: Returns the value of the given instance variable in
self
, ornil
if the instance variable is not set. -
#instance_variable_set: Sets the value of the given instance variable in
self
to the given object. -
#instance_variables: Returns an array of the symbol names of the instance variables in
self
. -
#remove_instance_variable: Removes the named instance variable from
self
.
Other
-
#clone: Returns a shallow copy of
self
, including singleton class and frozen state. -
#define_singleton_method: Defines a singleton method in
self
for the given symbol method-name and block or proc. -
#display: Prints
self
to the given IO stream or$stdout
. -
#dup: Returns a shallow unfrozen copy of
self
. -
#enum_for (aliased as #to_enum): Returns an Enumerator for
self
using the using the given method, arguments, and block. -
#extend: Includes the given modules in the singleton class of
self
. -
#freeze: Prevents further modifications to
self
. -
#hash: Returns the integer hash value for
self
. -
#inspect: Returns a human-readable string representation of
self
. -
#itself: Returns
self
. -
#method_missing: Method called when an undefined method is called on
self
. -
#public_send: Calls the given public method in
self
with the given argument. -
#send: Calls the given method in
self
with the given argument. -
#to_s: Returns a string representation of
self
.
Instance Method Summary collapse
-
#!~(other) ⇒ Boolean
Returns true if two objects do not match (using the =~ method), otherwise false.
-
#<=>(other) ⇒ 0?
Returns 0 if
obj
andother
are the same object orobj == other
, otherwise nil. - #=== ⇒ Object
-
#define_singleton_method(*args) ⇒ Object
Defines a public singleton method in the receiver.
-
#display(port = $>) ⇒ nil
Writes
self
on the given port:. -
#dup ⇒ Object
Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference.
-
#enum_for(*args) ⇒ Object
Creates a new Enumerator which will enumerate by calling
method
onobj
, passingargs
if any. -
#eql?(obj2) ⇒ Object
Equality — At the Object level, #== returns
true
only ifobj
andother
are the same object. -
#extend ⇒ Object
Adds to obj the instance methods from each module given as a parameter.
-
#freeze ⇒ Object
Prevents further modifications to obj.
- #hash ⇒ Object
-
#initialize_clone(*args) ⇒ Object
:nodoc:.
-
#initialize_copy(orig) ⇒ Object
:nodoc:.
-
#initialize_dup(orig) ⇒ Object
:nodoc:.
-
#inspect ⇒ String
Returns a string containing a human-readable representation of obj.
-
#instance_of? ⇒ Boolean
Returns
true
if obj is an instance of the given class. -
#instance_variable_defined?(iv) ⇒ Object
Returns
true
if the given instance variable is defined in obj. -
#instance_variable_get(iv) ⇒ Object
Returns the value of the given instance variable, or nil if the instance variable is not set.
-
#instance_variable_set(iv, val) ⇒ Object
Sets the instance variable named by symbol to the given object.
-
#instance_variables ⇒ Array
Returns an array of instance variable names for the receiver.
-
#is_a?(c) ⇒ Object
Returns
true
if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj. -
#itself ⇒ Object
Returns the receiver.
-
#kind_of?(c) ⇒ Object
Returns
true
if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj. -
#method(sym) ⇒ Object
Looks up the named method as a receiver in obj, returning a Method object (or raising NameError).
-
#methods(regular = true) ⇒ Array
Returns a list of the names of public and protected methods of obj.
-
#nil? ⇒ Boolean
Only the object nil responds
true
tonil?
. -
#object_id ⇒ Object
call-seq: obj.__id__ -> integer obj.object_id -> integer.
-
#private_methods(all = true) ⇒ Array
Returns the list of private methods accessible to obj.
-
#protected_methods(all = true) ⇒ Array
Returns the list of protected methods accessible to obj.
-
#public_method(sym) ⇒ Object
Similar to method, searches public method only.
-
#public_methods(all = true) ⇒ Array
Returns the list of public methods accessible to obj.
-
#public_send(*args) ⇒ Object
Invokes the method identified by symbol, passing it any arguments specified.
-
#remove_instance_variable(name) ⇒ Object
Removes the named instance variable from obj, returning that variable’s value.
-
#respond_to?(*args) ⇒ Object
Returns
true
if obj responds to the given method. -
#respond_to_missing?(mid, priv) ⇒ Object
DO NOT USE THIS DIRECTLY.
-
#send(*args) ⇒ Object
Invokes the method identified by symbol, passing it any arguments specified.
-
#singleton_class ⇒ Class
Returns the singleton class of obj.
-
#singleton_method(sym) ⇒ Object
Similar to method, searches singleton method only.
-
#singleton_methods(all = true) ⇒ Array
Returns an array of the names of singleton methods for obj.
-
#to_enum(*args) ⇒ Object
Creates a new Enumerator which will enumerate by calling
method
onobj
, passingargs
if any. -
#to_s ⇒ String
Returns a string representing obj.
Methods included from Kernel
#Array, #Complex, #Hash, #Rational, #String, #__callee__, #__dir__, #__method__, #`, #abort, #at_exit, #autoload, #autoload?, #binding, #block_given?, #callcc, #caller, #caller_locations, #catch, #chomp, #chop, #eval, #exec, #exit, #exit!, #fail, #fork, #format, #gets, #global_variables, #gsub, #iterator?, #lambda, #load, #local_variables, #open, #p, #print, #printf, #proc, #putc, #puts, #raise, #rand, #readline, #readlines, #require, #require_relative, #select, #set_trace_func, #sleep, #spawn, #sprintf, #srand, #sub, #syscall, #system, #test, #throw, #trace_var, #trap, #untrace_var
Instance Method Details
#!~(other) ⇒ Boolean
Returns true if two objects do not match (using the =~ method), otherwise false.
1677 1678 1679 1680 1681 1682 |
# File 'object.c', line 1677
static VALUE
rb_obj_not_match(VALUE obj1, VALUE obj2)
{
VALUE result = rb_funcall(obj1, id_match, 1, obj2);
return rb_obj_not(result);
}
|
#<=>(other) ⇒ 0?
Returns 0 if obj
and other
are the same object or obj == other
, otherwise nil.
The #<=> is used by various methods to compare objects, for example Enumerable#sort, Enumerable#max etc.
Your implementation of #<=> should return one of the following values: -1, 0, 1 or nil. -1 means self is smaller than other. 0 means self is equal to other. 1 means self is bigger than other. Nil means the two values could not be compared.
When you define #<=>, you can include Comparable to gain the methods #<=, #<, #==, #>=, #> and #between?.
1703 1704 1705 1706 1707 1708 1709 |
# File 'object.c', line 1703
static VALUE
rb_obj_cmp(VALUE obj1, VALUE obj2)
{
if (rb_equal(obj1, obj2))
return INT2FIX(0);
return Qnil;
}
|
#=== ⇒ Object
#define_singleton_method(symbol, method) ⇒ Object #define_singleton_method(symbol) { ... } ⇒ Object
Defines a public singleton method in the receiver. The method parameter can be a Proc
, a Method
or an UnboundMethod
object. If a block is specified, it is used as the method body. If a block or a method has parameters, they’re used as method parameters.
class A
class << self
def class_name
to_s
end
end
end
A.define_singleton_method(:who_am_i) do
"I am: #{class_name}"
end
A.who_am_i # ==> "I am: A"
guy = "Bob"
guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
guy.hello #=> "Bob: Hello there!"
chris = "Chris"
chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" }
chris.greet("Hi") #=> "Hi, I'm Chris!"
2395 2396 2397 2398 2399 2400 2401 2402 |
# File 'proc.c', line 2395
static VALUE
rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
{
VALUE klass = rb_singleton_class(obj);
const rb_scope_visibility_t scope_visi = {METHOD_VISI_PUBLIC, FALSE};
return rb_mod_define_method_with_visibility(argc, argv, klass, &scope_visi);
}
|
#display(port = $>) ⇒ nil
Writes self
on the given port:
1.display
"cat".display
[ 4, 5, 6 ].display
puts
Output:
1cat[4, 5, 6]
9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 |
# File 'io.c', line 9124
static VALUE
rb_obj_display(int argc, VALUE *argv, VALUE self)
{
VALUE out;
out = (!rb_check_arity(argc, 0, 1) ? rb_ractor_stdout() : argv[0]);
rb_io_write(out, self);
return Qnil;
}
|
#dup ⇒ Object
Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference.
This method may have class-specific behavior. If so, that behavior will be documented under the #initialize_copy
method of the class.
on dup vs clone
In general, #clone and #dup may have different semantics in descendant classes. While #clone is used to duplicate an object, including its internal state, #dup typically uses the class of the descendant object to create the new instance.
When using #dup, any modules that the object has been extended with will not be copied.
class Klass
attr_accessor :str
end
module Foo
def foo; 'foo'; end
end
s1 = Klass.new #=> #<Klass:0x401b3a38> s1.extend(Foo) #=> #<Klass:0x401b3a38> s1.foo #=> “foo”
s2 = s1.clone #=> #<Klass:0x401be280> s2.foo #=> “foo”
s3 = s1.dup #=> #<Klass:0x401c1084> s3.foo #=> NoMethodError: undefined method ‘foo’ for #<Klass:0x401c1084>
625 626 627 628 629 630 631 632 633 634 635 |
# File 'object.c', line 625
VALUE
rb_obj_dup(VALUE obj)
{
VALUE dup;
if (special_object_p(obj)) {
return obj;
}
dup = rb_obj_alloc(rb_obj_class(obj));
return rb_obj_dup_setup(obj, dup);
}
|
#to_enum(method = :each, *args) ⇒ Enumerator #enum_for(method = :each, *args) ⇒ Enumerator #to_enum(method = :each, *args) {|*args| ... } ⇒ Enumerator #enum_for(method = :each, *args) {|*args| ... } ⇒ Enumerator
Creates a new Enumerator which will enumerate by calling method
on obj
, passing args
if any. What was yielded by method becomes values of enumerator.
If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size).
Examples
str = "xyz"
enum = str.enum_for(:each_byte)
enum.each { |b| puts b }
# => 120
# => 121
# => 122
# protect an array from being modified by some_method
a = [1, 2, 3]
some_method(a.to_enum)
# String#split in block form is more memory-effective:
very_large_string.split("|") { |chunk| return chunk if chunk.include?('DATE') }
# This could be rewritten more idiomatically with to_enum:
very_large_string.to_enum(:split, "|").lazy.grep(/DATE/).first
It is typical to call to_enum when defining methods for a generic Enumerable, in case no block is passed.
Here is such an example, with parameter passing and a sizing block:
module Enumerable
# a generic method to repeat the values of any enumerable
def repeat(n)
raise ArgumentError, "#{n} is negative!" if n < 0
unless block_given?
return to_enum(__method__, n) do # __method__ is :repeat here
sz = size # Call size and multiply by n...
sz * n if sz # but return nil if size itself is nil
end
end
each do |*val|
n.times { yield *val }
end
end
end
%i[hello world].repeat(2) { |w| puts w }
# => Prints 'hello', 'hello', 'world', 'world'
enum = (1..14).repeat(3)
# => returns an Enumerator when called without a block
enum.first(4) # => [1, 1, 1, 2]
enum.size # => 42
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# File 'enumerator.c', line 381
static VALUE
obj_to_enum(int argc, VALUE *argv, VALUE obj)
{
VALUE enumerator, meth = sym_each;
if (argc > 0) {
--argc;
meth = *argv++;
}
enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
if (rb_block_given_p()) {
RB_OBJ_WRITE(enumerator, &enumerator_ptr(enumerator)->size, rb_block_proc());
}
return enumerator;
}
|
#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean
Equality — At the Object level, #== returns true
only if obj
and other
are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.
Unlike #==, the #equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b)
if and only if a
is the same object as b
):
obj = "a"
other = obj.dup
obj == other #=> true
obj.equal? other #=> false
obj.equal? obj #=> true
The #eql? method returns true
if obj
and other
refer to the same hash key. This is used by Hash to test members for equality. For any pair of objects where #eql? returns true
, the #hash value of both objects must be equal. So any subclass that overrides #eql? should also override #hash appropriately.
For objects of class Object, #eql? is synonymous with #==. Subclasses normally continue this tradition by aliasing #eql? to their overridden #== method, but there are exceptions. Numeric types, for example, perform type conversion across #==, but not across #eql?, so:
1 == 1.0 #=> true
1.eql? 1.0 #=> false
245 246 247 248 249 |
# File 'object.c', line 245
VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
return RBOOL(obj1 == obj2);
}
|
#extend ⇒ Object
Adds to obj the instance methods from each module given as a parameter.
module Mod
def hello
"Hello from Mod.\n"
end
end
class Klass
def hello
"Hello from Klass.\n"
end
end
k = Klass.new
k.hello #=> "Hello from Klass.\n"
k.extend(Mod) #=> #<Klass:0x401b3bc8>
k.hello #=> "Hello from Mod.\n"
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 |
# File 'eval.c', line 1820
static VALUE
rb_obj_extend(int argc, VALUE *argv, VALUE obj)
{
int i;
ID id_extend_object, id_extended;
CONST_ID(id_extend_object, "extend_object");
CONST_ID(id_extended, "extended");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++) {
Check_Type(argv[i], T_MODULE);
if (FL_TEST(argv[i], RMODULE_IS_REFINEMENT)) {
rb_raise(rb_eTypeError, "Cannot extend object with refinement");
}
}
while (argc--) {
rb_funcall(argv[argc], id_extend_object, 1, obj);
rb_funcall(argv[argc], id_extended, 1, obj);
}
return obj;
}
|
#freeze ⇒ Object
Prevents further modifications to obj. A FrozenError will be raised if modification is attempted. There is no way to unfreeze a frozen object. See also Object#frozen?.
This method returns self.
a = [ "a", "b", "c" ]
a.freeze
a << "z"
produces:
prog.rb:3:in `<<': can't modify frozen Array (FrozenError)
from prog.rb:3
Objects of the following classes are always frozen: Integer, Float, Symbol.
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 |
# File 'object.c', line 1318
VALUE
rb_obj_freeze(VALUE obj)
{
if (!OBJ_FROZEN(obj)) {
OBJ_FREEZE(obj);
if (SPECIAL_CONST_P(obj)) {
rb_bug("special consts should be frozen.");
}
}
return obj;
}
|
#hash ⇒ Object
251 |
# File 'object.c', line 251 VALUE rb_obj_hash(VALUE obj); |
#initialize_clone(*args) ⇒ Object
:nodoc:
705 706 707 708 709 710 711 712 713 714 715 |
# File 'object.c', line 705
static VALUE
rb_obj_init_clone(int argc, VALUE *argv, VALUE obj)
{
VALUE orig, opts;
if (rb_scan_args(argc, argv, "1:", &orig, &opts) < argc) {
/* Ignore a freeze keyword */
rb_get_freeze_opt(1, &opts);
}
rb_funcall(obj, id_init_copy, 1, orig);
return obj;
}
|
#initialize_copy(orig) ⇒ Object
:nodoc:
668 669 670 671 672 673 674 675 676 677 |
# File 'object.c', line 668
VALUE
rb_obj_init_copy(VALUE obj, VALUE orig)
{
if (obj == orig) return obj;
rb_check_frozen(obj);
if (TYPE(obj) != TYPE(orig) || rb_obj_class(obj) != rb_obj_class(orig)) {
rb_raise(rb_eTypeError, "initialize_copy should take same class object");
}
return obj;
}
|
#initialize_dup(orig) ⇒ Object
:nodoc:
688 689 690 691 692 693 |
# File 'object.c', line 688
VALUE
rb_obj_init_dup_clone(VALUE obj, VALUE orig)
{
rb_funcall(obj, id_init_copy, 1, orig);
return obj;
}
|
#inspect ⇒ String
Returns a string containing a human-readable representation of obj. The default #inspect shows the object’s class name, an encoding of its memory address, and a list of the instance variables and their values (by calling #inspect on each of them). User defined classes should override this method to provide a better representation of obj. When overriding this method, it should return a string whose encoding is compatible with the default external encoding.
[ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]"
Time.new.inspect #=> "2008-03-08 19:43:39 +0900"
class Foo
end
Foo.new.inspect #=> "#<Foo:0x0300c868>"
class Bar
def initialize
@bar = 1
end
end
Bar.new.inspect #=> "#<Bar:0x0300c868 @bar=1>"
818 819 820 821 822 823 824 825 826 827 828 829 830 831 |
# File 'object.c', line 818
static VALUE
rb_obj_inspect(VALUE obj)
{
if (rb_ivar_count(obj) > 0) {
VALUE str;
VALUE c = rb_class_name(CLASS_OF(obj));
str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void*)obj);
return rb_exec_recursive(inspect_obj, obj, str);
}
else {
return rb_any_to_s(obj);
}
}
|
#instance_of? ⇒ Boolean
Returns true
if obj is an instance of the given class. See also Object#kind_of?.
class A; end
class B < A; end
class C < B; end
b = B.new
b.instance_of? A #=> false
b.instance_of? B #=> true
b.instance_of? C #=> false
867 868 869 870 871 872 |
# File 'object.c', line 867
VALUE
rb_obj_is_instance_of(VALUE obj, VALUE c)
{
c = class_or_module_required(c);
return RBOOL(rb_obj_class(obj) == c);
}
|
#instance_variable_defined?(symbol) ⇒ Boolean #instance_variable_defined?(string) ⇒ Boolean
Returns true
if the given instance variable is defined in obj. String arguments are converted to symbols.
class Fred
def initialize(p1, p2)
@a, @b = p1, p2
end
end
fred = Fred.new('cat', 99)
fred.instance_variable_defined?(:@a) #=> true
fred.instance_variable_defined?("@b") #=> true
fred.instance_variable_defined?("@c") #=> false
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 |
# File 'object.c', line 2980
static VALUE
rb_obj_ivar_defined(VALUE obj, VALUE iv)
{
ID id = id_for_var(obj, iv, instance);
if (!id) {
return Qfalse;
}
return rb_ivar_defined(obj, id);
}
|
#instance_variable_get(symbol) ⇒ Object #instance_variable_get(string) ⇒ Object
Returns the value of the given instance variable, or nil if the instance variable is not set. The @
part of the variable name should be included for regular instance variables. Throws a NameError exception if the supplied symbol is not valid as an instance variable name. String arguments are converted to symbols.
class Fred
def initialize(p1, p2)
@a, @b = p1, p2
end
end
fred = Fred.new('cat', 99)
fred.instance_variable_get(:@a) #=> "cat"
fred.instance_variable_get("@b") #=> 99
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 |
# File 'object.c', line 2918
static VALUE
rb_obj_ivar_get(VALUE obj, VALUE iv)
{
ID id = id_for_var(obj, iv, instance);
if (!id) {
return Qnil;
}
return rb_ivar_get(obj, id);
}
|
#instance_variable_set(symbol, obj) ⇒ Object #instance_variable_set(string, obj) ⇒ Object
Sets the instance variable named by symbol to the given object. This may circumvent the encapsulation intended by the author of the class, so it should be used with care. The variable does not have to exist prior to this call. If the instance variable name is passed as a string, that string is converted to a symbol.
class Fred
def initialize(p1, p2)
@a, @b = p1, p2
end
end
fred = Fred.new('cat', 99)
fred.instance_variable_set(:@a, 'dog') #=> "dog"
fred.instance_variable_set(:@c, 'cat') #=> "cat"
fred.inspect #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
2952 2953 2954 2955 2956 2957 2958 |
# File 'object.c', line 2952
static VALUE
rb_obj_ivar_set_m(VALUE obj, VALUE iv, VALUE val)
{
ID id = id_for_var(obj, iv, instance);
if (!id) id = rb_intern_str(iv);
return rb_ivar_set(obj, id, val);
}
|
#instance_variables ⇒ Array
Returns an array of instance variable names for the receiver. Note that simply defining an accessor does not create the corresponding instance variable.
class Fred
attr_accessor :a1
def initialize
@iv = 3
end
end
Fred.new.instance_variables #=> [:@iv]
2286 2287 2288 2289 2290 2291 2292 2293 2294 |
# File 'variable.c', line 2286
VALUE
rb_obj_instance_variables(VALUE obj)
{
VALUE ary;
ary = rb_ary_new();
rb_ivar_foreach(obj, ivar_i, ary);
return ary;
}
|
#is_a? ⇒ Boolean #kind_of? ⇒ Boolean
Returns true
if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj.
module M; end
class A
include M
end
class B < A; end
class C < B; end
b = B.new
b.is_a? A #=> true
b.is_a? B #=> true
b.is_a? C #=> false
b.is_a? M #=> true
b.kind_of? A #=> true
b.kind_of? B #=> true
b.kind_of? C #=> false
b.kind_of? M #=> true
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
# File 'object.c', line 923
VALUE
rb_obj_is_kind_of(VALUE obj, VALUE c)
{
VALUE cl = CLASS_OF(obj);
RUBY_ASSERT(RB_TYPE_P(cl, T_CLASS));
// Fastest path: If the object's class is an exact match we know `c` is a
// class without checking type and can return immediately.
if (cl == c) return Qtrue;
// Note: YJIT needs this function to never allocate and never raise when
// `c` is a class or a module.
if (LIKELY(RB_TYPE_P(c, T_CLASS))) {
// Fast path: Both are T_CLASS
return class_search_class_ancestor(cl, c);
}
else if (RB_TYPE_P(c, T_ICLASS)) {
// First check if we inherit the includer
// If we do we can return true immediately
VALUE includer = RCLASS_INCLUDER(c);
if (cl == includer) return Qtrue;
// Usually includer is a T_CLASS here, except when including into an
// already included Module.
// If it is a class, attempt the fast class-to-class check and return
// true if there is a match.
if (RB_TYPE_P(includer, T_CLASS) && class_search_class_ancestor(cl, includer))
return Qtrue;
// We don't include the ICLASS directly, so must check if we inherit
// the module via another include
return RBOOL(class_search_ancestor(cl, RCLASS_ORIGIN(c)));
}
else if (RB_TYPE_P(c, T_MODULE)) {
// Slow path: check each ancestor in the linked list and its method table
return RBOOL(class_search_ancestor(cl, RCLASS_ORIGIN(c)));
}
else {
rb_raise(rb_eTypeError, "class or module required");
UNREACHABLE_RETURN(Qfalse);
}
}
|
#itself ⇒ Object
Returns the receiver.
string = "my string"
string.itself.object_id == string.object_id #=> true
648 649 650 651 652 |
# File 'object.c', line 648
static VALUE
rb_obj_itself(VALUE obj)
{
return obj;
}
|
#is_a? ⇒ Boolean #kind_of? ⇒ Boolean
Returns true
if class is the class of obj, or if class is one of the superclasses of obj or modules included in obj.
module M; end
class A
include M
end
class B < A; end
class C < B; end
b = B.new
b.is_a? A #=> true
b.is_a? B #=> true
b.is_a? C #=> false
b.is_a? M #=> true
b.kind_of? A #=> true
b.kind_of? B #=> true
b.kind_of? C #=> false
b.kind_of? M #=> true
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
# File 'object.c', line 923
VALUE
rb_obj_is_kind_of(VALUE obj, VALUE c)
{
VALUE cl = CLASS_OF(obj);
RUBY_ASSERT(RB_TYPE_P(cl, T_CLASS));
// Fastest path: If the object's class is an exact match we know `c` is a
// class without checking type and can return immediately.
if (cl == c) return Qtrue;
// Note: YJIT needs this function to never allocate and never raise when
// `c` is a class or a module.
if (LIKELY(RB_TYPE_P(c, T_CLASS))) {
// Fast path: Both are T_CLASS
return class_search_class_ancestor(cl, c);
}
else if (RB_TYPE_P(c, T_ICLASS)) {
// First check if we inherit the includer
// If we do we can return true immediately
VALUE includer = RCLASS_INCLUDER(c);
if (cl == includer) return Qtrue;
// Usually includer is a T_CLASS here, except when including into an
// already included Module.
// If it is a class, attempt the fast class-to-class check and return
// true if there is a match.
if (RB_TYPE_P(includer, T_CLASS) && class_search_class_ancestor(cl, includer))
return Qtrue;
// We don't include the ICLASS directly, so must check if we inherit
// the module via another include
return RBOOL(class_search_ancestor(cl, RCLASS_ORIGIN(c)));
}
else if (RB_TYPE_P(c, T_MODULE)) {
// Slow path: check each ancestor in the linked list and its method table
return RBOOL(class_search_ancestor(cl, RCLASS_ORIGIN(c)));
}
else {
rb_raise(rb_eTypeError, "class or module required");
UNREACHABLE_RETURN(Qfalse);
}
}
|
#method(sym) ⇒ Object
Looks up the named method as a receiver in obj, returning a Method object (or raising NameError). The Method object acts as a closure in obj’s object instance, so instance variables and the value of self
remain available.
class Demo
def initialize(n)
@iv = n
end
def hello()
"Hello, @iv = #{@iv}"
end
end
k = Demo.new(99)
m = k.method(:hello)
m.call #=> "Hello, @iv = 99"
l = Demo.new('Fred')
m = l.method("hello")
m.call #=> "Hello, @iv = Fred"
Note that Method implements to_proc
method, which means it can be used with iterators.
[ 1, 2, 3 ].each(&method(:puts)) # => prints 3 lines to stdout
out = File.open('test.txt', 'w')
[ 1, 2, 3 ].each(&out.method(:puts)) # => prints 3 lines to file
require 'date'
%w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
#=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
2085 2086 2087 2088 2089 |
# File 'proc.c', line 2085
VALUE
rb_obj_method(VALUE obj, VALUE vid)
{
return obj_method(obj, vid, FALSE);
}
|
#methods(regular = true) ⇒ Array
Returns a list of the names of public and protected methods of obj. This will include all the methods accessible in obj’s ancestors. If the optional parameter is false
, it returns an array of obj’s public and protected singleton methods, the array will not include methods in modules included in obj.
class Klass
def klass_method()
end
end
k = Klass.new
k.methods[0..9] #=> [:klass_method, :nil?, :===,
# :==~, :!, :eql?
# :hash, :<=>, :class, :singleton_class]
k.methods.length #=> 56
k.methods(false) #=> []
def k.singleton_method; end
k.methods(false) #=> [:singleton_method]
module M123; def m123; end end
k.extend M123
k.methods(false) #=> [:singleton_method]
2002 2003 2004 2005 2006 2007 2008 2009 2010 |
# File 'class.c', line 2002
VALUE
rb_obj_methods(int argc, const VALUE *argv, VALUE obj)
{
rb_check_arity(argc, 0, 1);
if (argc > 0 && !RTEST(argv[0])) {
return rb_obj_singleton_methods(argc, argv, obj);
}
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i);
}
|
#nil? ⇒ Boolean
1663 1664 1665 1666 1667 |
# File 'object.c', line 1663
VALUE
rb_false(VALUE obj)
{
return Qfalse;
}
|
#object_id ⇒ Object
call-seq:
obj.__id__ -> integer
obj.object_id -> integer
Returns an integer identifier for obj
.
The same number will be returned on all calls to object_id
for a given object, and no two active objects will share an id.
Note: that some objects of builtin classes are reused for optimization. This is the case for immediate values and frozen string literals.
BasicObject implements __id__
, Kernel implements object_id
.
Immediate values are not passed by reference but are passed by value: nil
, true
, false
, Fixnums, Symbols, and some Floats.
Object.new.object_id == Object.new.object_id # => false
(21 * 2).object_id == (21 * 2).object_id # => true
"hello".object_id == "hello".object_id # => false
"hi".freeze.object_id == "hi".freeze.object_id # => true
1898 1899 1900 1901 1902 1903 1904 1905 1906 |
# File 'gc.c', line 1898
VALUE
rb_obj_id(VALUE obj)
{
/* If obj is an immediate, the object ID is obj directly converted to a Numeric.
* Otherwise, the object ID is a Numeric that is a non-zero multiple of
* (RUBY_IMMEDIATE_MASK + 1) which guarantees that it does not collide with
* any immediates. */
return rb_find_object_id(rb_gc_get_objspace(), obj, rb_gc_impl_object_id);
}
|
#private_methods(all = true) ⇒ Array
Returns the list of private methods accessible to obj. If the all parameter is set to false
, only those methods in the receiver will be listed.
2036 2037 2038 2039 2040 |
# File 'class.c', line 2036
VALUE
rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i);
}
|
#protected_methods(all = true) ⇒ Array
Returns the list of protected methods accessible to obj. If the all parameter is set to false
, only those methods in the receiver will be listed.
2021 2022 2023 2024 2025 |
# File 'class.c', line 2021
VALUE
rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i);
}
|
#public_method(sym) ⇒ Object
Similar to method, searches public method only.
2098 2099 2100 2101 2102 |
# File 'proc.c', line 2098
VALUE
rb_obj_public_method(VALUE obj, VALUE vid)
{
return obj_method(obj, vid, TRUE);
}
|
#public_methods(all = true) ⇒ Array
Returns the list of public methods accessible to obj. If the all parameter is set to false
, only those methods in the receiver will be listed.
2051 2052 2053 2054 2055 |
# File 'class.c', line 2051
VALUE
rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i);
}
|
#public_send(symbol[, args...]) ⇒ Object #public_send(string[, args...]) ⇒ Object
Invokes the method identified by symbol, passing it any arguments specified. Unlike send, public_send calls public methods only. When the method is identified by a string, the string is converted to a symbol.
1.public_send(:puts, "hello") # causes NoMethodError
1327 1328 1329 1330 1331 |
# File 'vm_eval.c', line 1327
static VALUE
rb_f_public_send(int argc, VALUE *argv, VALUE recv)
{
return send_internal_kw(argc, argv, recv, CALL_PUBLIC);
}
|
#remove_instance_variable(symbol) ⇒ Object #remove_instance_variable(string) ⇒ Object
Removes the named instance variable from obj, returning that variable’s value. The name can be passed as a symbol or as a string.
class Dummy
attr_reader :var
def initialize
@var = 99
end
def remove
remove_instance_variable(:@var)
end
end
d = Dummy.new
d.var #=> 99
d.remove #=> 99
d.var #=> nil
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 |
# File 'variable.c', line 2340
VALUE
rb_obj_remove_instance_variable(VALUE obj, VALUE name)
{
const ID id = id_for_var(obj, name, an, instance);
// Frozen check comes here because it's expected that we raise a
// NameError (from the id_for_var check) before we raise a FrozenError
rb_check_frozen(obj);
if (id) {
VALUE val = rb_ivar_delete(obj, id, Qundef);
if (!UNDEF_P(val)) return val;
}
rb_name_err_raise("instance variable %1$s not defined",
obj, name);
UNREACHABLE_RETURN(Qnil);
}
|
#respond_to?(symbol, include_all = false) ⇒ Boolean #respond_to?(string, include_all = false) ⇒ Boolean
Returns true
if obj responds to the given method. Private and protected methods are included in the search only if the optional second parameter evaluates to true
.
If the method is not implemented, as Process.fork on Windows, File.lchmod on GNU/Linux, etc., false is returned.
If the method is not defined, respond_to_missing?
method is called and the result is returned.
When the method name parameter is given as a string, the string is converted to a symbol.
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 |
# File 'vm_method.c', line 2986
static VALUE
obj_respond_to(int argc, VALUE *argv, VALUE obj)
{
VALUE mid, priv;
ID id;
rb_execution_context_t *ec = GET_EC();
rb_scan_args(argc, argv, "11", &mid, &priv);
if (!(id = rb_check_id(&mid))) {
VALUE ret = basic_obj_respond_to_missing(ec, CLASS_OF(obj), obj,
rb_to_symbol(mid), priv);
if (UNDEF_P(ret)) ret = Qfalse;
return ret;
}
return RBOOL(basic_obj_respond_to(ec, obj, id, !RTEST(priv)));
}
|
#respond_to_missing?(symbol, include_all) ⇒ Boolean #respond_to_missing?(string, include_all) ⇒ Boolean
DO NOT USE THIS DIRECTLY.
Hook method to return whether the obj can respond to id method or not.
When the method name parameter is given as a string, the string is converted to a symbol.
See #respond_to?, and the example of BasicObject.
3018 3019 3020 3021 3022 |
# File 'vm_method.c', line 3018
static VALUE
obj_respond_to_missing(VALUE obj, VALUE mid, VALUE priv)
{
return Qfalse;
}
|
#send(symbol[, args...]) ⇒ Object #__send__(symbol[, args...]) ⇒ Object #send(string[, args...]) ⇒ Object #__send__(string[, args...]) ⇒ Object
Invokes the method identified by symbol, passing it any
arguments specified.
When the method is identified by a string, the string is converted
to a symbol.
BasicObject implements +__send__+, Kernel implements +send+.
<code>__send__</code> is safer than +send+
when _obj_ has the same method name like <code>Socket</code>.
See also <code>public_send</code>.
class Klass
def hello(*args)
"Hello " + args.join(' ')
end
end
k = Klass.new
k.send :hello, "gentle", "readers" #=> "Hello gentle readers"
1307 1308 1309 1310 1311 |
# File 'vm_eval.c', line 1307
VALUE
rb_f_send(int argc, VALUE *argv, VALUE recv)
{
return send_internal_kw(argc, argv, recv, CALL_FCALL);
}
|
#singleton_class ⇒ Class
Returns the singleton class of obj. This method creates a new singleton class if obj does not have one.
If obj is nil
, true
, or false
, it returns NilClass, TrueClass, or FalseClass, respectively. If obj is an Integer, a Float or a Symbol, it raises a TypeError.
Object.new.singleton_class #=> #<Class:#<Object:0xb7ce1e24>>
String.singleton_class #=> #<Class:String>
nil.singleton_class #=> NilClass
319 320 321 322 323 |
# File 'object.c', line 319
static VALUE
rb_obj_singleton_class(VALUE obj)
{
return rb_singleton_class(obj);
}
|
#singleton_method(sym) ⇒ Object
Similar to method, searches singleton method only.
class Demo
def initialize(n)
@iv = n
end
def hello()
"Hello, @iv = #{@iv}"
end
end
k = Demo.new(99)
def k.hi
"Hi, @iv = #{@iv}"
end
m = k.singleton_method(:hi)
m.call #=> "Hi, @iv = 99"
m = k.singleton_method(:hello) #=> NameError
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 |
# File 'proc.c', line 2141
VALUE
rb_obj_singleton_method(VALUE obj, VALUE vid)
{
VALUE sc = rb_singleton_class_get(obj);
VALUE klass;
ID id = rb_check_id(&vid);
if (NIL_P(sc) ||
NIL_P(klass = RCLASS_ORIGIN(sc)) ||
!NIL_P(rb_special_singleton_class(obj))) {
/* goto undef; */
}
else if (! id) {
VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod);
if (m) return m;
/* else goto undef; */
}
else {
VALUE args[2] = {obj, vid};
VALUE ruby_method = rb_rescue(rb_obj_singleton_method_lookup, (VALUE)args, rb_obj_singleton_method_lookup_fail, Qfalse);
if (ruby_method) {
struct METHOD *method = (struct METHOD *)RTYPEDDATA_GET_DATA(ruby_method);
VALUE lookup_class = RBASIC_CLASS(obj);
VALUE stop_class = rb_class_superclass(sc);
VALUE method_class = method->iclass;
/* Determine if method is in singleton class, or module included in or prepended to it */
do {
if (lookup_class == method_class) {
return ruby_method;
}
lookup_class = RCLASS_SUPER(lookup_class);
} while (lookup_class && lookup_class != stop_class);
}
}
/* undef: */
vid = ID2SYM(id);
rb_name_err_raise("undefined singleton method '%1$s' for '%2$s'",
obj, vid);
UNREACHABLE_RETURN(Qundef);
}
|
#singleton_methods(all = true) ⇒ Array
Returns an array of the names of singleton methods for obj. If the optional all parameter is true, the list will include methods in modules included in obj. Only public and protected singleton methods are returned.
module Other
def three() end
end
class Single
def Single.four() end
end
a = Single.new
def a.one()
end
class << a
include Other
def two()
end
end
Single.singleton_methods #=> [:four]
a.singleton_methods(false) #=> [:two, :one]
a.singleton_methods #=> [:two, :one, :three]
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 |
# File 'class.c', line 2090
VALUE
rb_obj_singleton_methods(int argc, const VALUE *argv, VALUE obj)
{
VALUE ary, klass, origin;
struct method_entry_arg me_arg;
struct rb_id_table *mtbl;
int recur = TRUE;
if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]);
if (RCLASS_SINGLETON_P(obj)) {
rb_singleton_class(obj);
}
klass = CLASS_OF(obj);
origin = RCLASS_ORIGIN(klass);
me_arg.list = st_init_numtable();
me_arg.recur = recur;
if (klass && RCLASS_SINGLETON_P(klass)) {
if ((mtbl = RCLASS_M_TBL(origin)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
klass = RCLASS_SUPER(klass);
}
if (recur) {
while (klass && (RCLASS_SINGLETON_P(klass) || RB_TYPE_P(klass, T_ICLASS))) {
if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
klass = RCLASS_SUPER(klass);
}
}
ary = rb_ary_new2(me_arg.list->num_entries);
st_foreach(me_arg.list, ins_methods_i, ary);
st_free_table(me_arg.list);
return ary;
}
|
#to_enum(method = :each, *args) ⇒ Enumerator #enum_for(method = :each, *args) ⇒ Enumerator #to_enum(method = :each, *args) {|*args| ... } ⇒ Enumerator #enum_for(method = :each, *args) {|*args| ... } ⇒ Enumerator
Creates a new Enumerator which will enumerate by calling method
on obj
, passing args
if any. What was yielded by method becomes values of enumerator.
If a block is given, it will be used to calculate the size of the enumerator without the need to iterate it (see Enumerator#size).
Examples
str = "xyz"
enum = str.enum_for(:each_byte)
enum.each { |b| puts b }
# => 120
# => 121
# => 122
# protect an array from being modified by some_method
a = [1, 2, 3]
some_method(a.to_enum)
# String#split in block form is more memory-effective:
very_large_string.split("|") { |chunk| return chunk if chunk.include?('DATE') }
# This could be rewritten more idiomatically with to_enum:
very_large_string.to_enum(:split, "|").lazy.grep(/DATE/).first
It is typical to call to_enum when defining methods for a generic Enumerable, in case no block is passed.
Here is such an example, with parameter passing and a sizing block:
module Enumerable
# a generic method to repeat the values of any enumerable
def repeat(n)
raise ArgumentError, "#{n} is negative!" if n < 0
unless block_given?
return to_enum(__method__, n) do # __method__ is :repeat here
sz = size # Call size and multiply by n...
sz * n if sz # but return nil if size itself is nil
end
end
each do |*val|
n.times { yield *val }
end
end
end
%i[hello world].repeat(2) { |w| puts w }
# => Prints 'hello', 'hello', 'world', 'world'
enum = (1..14).repeat(3)
# => returns an Enumerator when called without a block
enum.first(4) # => [1, 1, 1, 2]
enum.size # => 42
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# File 'enumerator.c', line 381
static VALUE
obj_to_enum(int argc, VALUE *argv, VALUE obj)
{
VALUE enumerator, meth = sym_each;
if (argc > 0) {
--argc;
meth = *argv++;
}
enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
if (rb_block_given_p()) {
RB_OBJ_WRITE(enumerator, &enumerator_ptr(enumerator)->size, rb_block_proc());
}
return enumerator;
}
|
#to_s ⇒ String
Returns a string representing obj. The default #to_s prints the object’s class and an encoding of the object id. As a special case, the top-level object that is the initial execution context of Ruby programs returns “main”.
727 728 729 730 731 732 733 734 735 736 |
# File 'object.c', line 727
VALUE
rb_any_to_s(VALUE obj)
{
VALUE str;
VALUE cname = rb_class_name(CLASS_OF(obj));
str = rb_sprintf("#<%"PRIsVALUE":%p>", cname, (void*)obj);
return str;
}
|