Method: Array#sum
- Defined in:
- array.c
#sum(init = 0) ⇒ Object #sum(init = 0) {|element| ... } ⇒ Object
With no block given, returns the sum of init
and all elements of self
;
for array +array+ and value +init+, equivalent to:
sum = init
array.each {|element| sum += element }
sum
For example, <tt>[e0, e1, e2].sum</tt> returns <tt>init + e0 + e1 + e2</tt>.
Examples:
[0, 1, 2, 3].sum # => 6
[0, 1, 2, 3].sum(100) # => 106
['abc', 'def', 'ghi'].sum('jkl') # => "jklabcdefghi"
[[:foo, :bar], ['foo', 'bar']].sum([2, 3])
# => [2, 3, :foo, :bar, "foo", "bar"]
The +init+ value and elements need not be numeric, but must all be <tt>+</tt>-compatible:
# Raises TypeError: Array can't be coerced into Integer.
[[:foo, :bar], ['foo', 'bar']].sum(2)
With a block given, calls the block with each element of +self+;
the block's return value (instead of the element itself) is used as the addend:
['zero', 1, :two].sum('Coerced and concatenated: ') {|element| element.to_s }
# => "Coerced and concatenated: zero1two"
Notes:
- Array#join and Array#flatten may be faster than Array#sum
for an array of strings or an array of arrays.
- Array#sum method may not respect method redefinition of "+" methods such as Integer#+.
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 |
# File 'array.c', line 8098
static VALUE
rb_ary_sum(int argc, VALUE *argv, VALUE ary)
{
VALUE e, v, r;
long i, n;
int block_given;
v = (rb_check_arity(argc, 0, 1) ? argv[0] : LONG2FIX(0));
block_given = rb_block_given_p();
if (RARRAY_LEN(ary) == 0)
return v;
n = 0;
r = Qundef;
if (!FIXNUM_P(v) && !RB_BIGNUM_TYPE_P(v) && !RB_TYPE_P(v, T_RATIONAL)) {
i = 0;
goto init_is_a_value;
}
for (i = 0; i < RARRAY_LEN(ary); i++) {
e = RARRAY_AREF(ary, i);
if (block_given)
e = rb_yield(e);
if (FIXNUM_P(e)) {
n += FIX2LONG(e); /* should not overflow long type */
if (!FIXABLE(n)) {
v = rb_big_plus(LONG2NUM(n), v);
n = 0;
}
}
else if (RB_BIGNUM_TYPE_P(e))
v = rb_big_plus(e, v);
else if (RB_TYPE_P(e, T_RATIONAL)) {
if (UNDEF_P(r))
r = e;
else
r = rb_rational_plus(r, e);
}
else
goto not_exact;
}
v = finish_exact_sum(n, r, v, argc!=0);
return v;
not_exact:
v = finish_exact_sum(n, r, v, i!=0);
if (RB_FLOAT_TYPE_P(e)) {
/*
* Kahan-Babuska balancing compensated summation algorithm
* See https://link.springer.com/article/10.1007/s00607-005-0139-x
*/
double f, c;
double x, t;
f = NUM2DBL(v);
c = 0.0;
goto has_float_value;
for (; i < RARRAY_LEN(ary); i++) {
e = RARRAY_AREF(ary, i);
if (block_given)
e = rb_yield(e);
if (RB_FLOAT_TYPE_P(e))
has_float_value:
x = RFLOAT_VALUE(e);
else if (FIXNUM_P(e))
x = FIX2LONG(e);
else if (RB_BIGNUM_TYPE_P(e))
x = rb_big2dbl(e);
else if (RB_TYPE_P(e, T_RATIONAL))
x = rb_num2dbl(e);
else
goto not_float;
if (isnan(f)) continue;
if (isnan(x)) {
f = x;
continue;
}
if (isinf(x)) {
if (isinf(f) && signbit(x) != signbit(f))
f = NAN;
else
f = x;
continue;
}
if (isinf(f)) continue;
t = f + x;
if (fabs(f) >= fabs(x))
c += ((f - t) + x);
else
c += ((x - t) + f);
f = t;
}
f += c;
return DBL2NUM(f);
not_float:
v = DBL2NUM(f);
}
goto has_some_value;
init_is_a_value:
for (; i < RARRAY_LEN(ary); i++) {
e = RARRAY_AREF(ary, i);
if (block_given)
e = rb_yield(e);
has_some_value:
v = rb_funcall(v, idPLUS, 1, e);
}
return v;
}
|