Class: Rational
Overview
A rational number can be represented as a pair of integer numbers: a/b (b>0), where a is the numerator and b is the denominator. Integer a equals rational a/1 mathematically.
In Ruby, you can create rational objects with the Kernel#Rational, to_r, or rationalize methods or by suffixing r
to a literal. The return values will be irreducible fractions.
Rational(1) #=> (1/1)
Rational(2, 3) #=> (2/3)
Rational(4, -6) #=> (-2/3)
3.to_r #=> (3/1)
2/3r #=> (2/3)
You can also create rational objects from floating-point numbers or strings.
Rational(0.3) #=> (5404319552844595/18014398509481984)
Rational('0.3') #=> (3/10)
Rational('2/3') #=> (2/3)
0.3.to_r #=> (5404319552844595/18014398509481984)
'0.3'.to_r #=> (3/10)
'2/3'.to_r #=> (2/3)
0.3.rationalize #=> (3/10)
A rational object is an exact number, which helps you to write programs without any rounding errors.
10.times.inject(0) {|t| t + 0.1 } #=> 0.9999999999999999
10.times.inject(0) {|t| t + Rational('0.1') } #=> (1/1)
However, when an expression includes an inexact component (numerical value or operation), it will produce an inexact result.
Rational(10) / 3 #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335
Rational(-8) ** Rational(1, 3)
#=> (1.0000000000000002+1.7320508075688772i)
Defined Under Namespace
Classes: compatible
Instance Method Summary collapse
-
#*(numeric) ⇒ Numeric
Performs multiplication.
- #** ⇒ Object
-
#+(numeric) ⇒ Numeric
Performs addition.
-
#-(numeric) ⇒ Numeric
Performs subtraction.
-
#- ⇒ Object
Negates
rat
. -
#/(other) ⇒ Object
Performs division.
-
#<=>(numeric) ⇒ -1, ...
Returns -1, 0, or +1 depending on whether
rational
is less than, equal to, or greater thannumeric
. -
#==(object) ⇒ Boolean
Returns
true
ifrat
equalsobject
numerically. -
#abs ⇒ Object
Returns the absolute value of
rat
. -
#ceil([ndigits]) ⇒ Integer
Returns the smallest number greater than or equal to
rat
with a precision ofndigits
decimal digits (default: 0). -
#coerce(other) ⇒ Object
:nodoc:.
-
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#fdiv(numeric) ⇒ Float
Performs division and returns the value as a Float.
-
#floor([ndigits]) ⇒ Integer
Returns the largest number less than or equal to
rat
with a precision ofndigits
decimal digits (default: 0). -
#hash ⇒ Object
:nodoc:.
-
#inspect ⇒ String
Returns the value as a string for inspection.
-
#magnitude ⇒ Object
Returns the absolute value of
rat
. -
#marshal_dump ⇒ Object
private
:nodoc:.
-
#negative? ⇒ Boolean
Returns
true
ifrat
is less than 0. -
#numerator ⇒ Integer
Returns the numerator.
-
#positive? ⇒ Boolean
Returns
true
ifrat
is greater than 0. -
#quo(other) ⇒ Object
Performs division.
-
#rationalize(*args) ⇒ Object
Returns a simpler approximation of the value if the optional argument
eps
is given (rat-|eps| <= result <= rat+|eps|), self otherwise. -
#round([ndigits][, half: mode]) ⇒ Integer
Returns
rat
rounded to the nearest value with a precision ofndigits
decimal digits (default: 0). -
#to_f ⇒ Float
Returns the value as a Float.
-
#to_i ⇒ Integer
Returns the truncated value as an integer.
-
#to_r ⇒ self
Returns self.
-
#to_s ⇒ String
Returns the value as a string.
-
#truncate([ndigits]) ⇒ Integer
Returns
rat
truncated (toward zero) to a precision ofndigits
decimal digits (default: 0).
Methods inherited from Numeric
#%, #+@, #abs2, #angle, #arg, #clone, #conj, #conjugate, #div, #divmod, #dup, #eql?, #finite?, #i, #imag, #imaginary, #infinite?, #integer?, #modulo, #nonzero?, #phase, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c, #to_int, #zero?
Methods included from Comparable
#<, #<=, #>, #>=, #between?, #clamp
Instance Method Details
#*(numeric) ⇒ Numeric
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
# File 'rational.c', line 873
VALUE
rb_rational_mul(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '*');
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '*');
}
}
else {
return rb_num_coerce_bin(self, other, '*');
}
}
|
#** ⇒ Object
#+(numeric) ⇒ Numeric
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
# File 'rational.c', line 736
VALUE
rb_rational_plus(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
return f_rational_new_no_reduce2(CLASS_OF(self),
rb_int_plus(dat->num, rb_int_mul(other, dat->den)),
dat->den);
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '+');
}
}
else {
return rb_num_coerce_bin(self, other, '+');
}
}
|
#-(numeric) ⇒ Numeric
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
# File 'rational.c', line 777
static VALUE
nurat_sub(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
return f_rational_new_no_reduce2(CLASS_OF(self),
rb_int_minus(dat->num, rb_int_mul(other, dat->den)),
dat->den);
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '-');
}
}
else {
return rb_num_coerce_bin(self, other, '-');
}
}
|
#- ⇒ Object
Negates rat
.
623 624 625 626 627 628 629 630 |
# File 'rational.c', line 623
VALUE
rb_rational_uminus(VALUE self)
{
const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0);
get_dat1(self);
(void)unused;
return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den);
}
|
#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
# File 'rational.c', line 915
static VALUE
nurat_div(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
if (f_zero_p(other))
rb_num_zerodiv();
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/');
}
}
else if (RB_FLOAT_TYPE_P(other)) {
VALUE v = nurat_to_f(self);
return rb_flo_div_flo(v, other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_num_zerodiv();
{
get_dat2(self, other);
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/');
}
}
else {
return rb_num_coerce_bin(self, other, '/');
}
}
|
#<=>(numeric) ⇒ -1, ...
Returns -1, 0, or +1 depending on whether rational
is less than, equal to, or greater than numeric
.
nil
is returned if the two values are incomparable.
Rational(2, 3) <=> Rational(2, 3) #=> 0
Rational(5) <=> 5 #=> 0
Rational(2, 3) <=> Rational(1, 3) #=> 1
Rational(1, 3) <=> 1 #=> -1
Rational(1, 3) <=> 0.3 #=> 1
Rational(1, 3) <=> "0.3" #=> nil
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 |
# File 'rational.c', line 1096
VALUE
rb_rational_cmp(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
{
get_dat1(self);
if (dat->den == LONG2FIX(1))
return rb_int_cmp(dat->num, other); /* c14n */
other = f_rational_new_bang1(CLASS_OF(self), other);
goto other_is_rational;
}
}
else if (RB_FLOAT_TYPE_P(other)) {
return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
other_is_rational:
{
VALUE num1, num2;
get_dat2(self, other);
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
}
else {
num1 = rb_int_mul(adat->num, bdat->den);
num2 = rb_int_mul(bdat->num, adat->den);
}
return rb_int_cmp(rb_int_minus(num1, num2), ZERO);
}
}
else {
return rb_num_coerce_cmp(self, other, rb_intern("<=>"));
}
}
|
#==(object) ⇒ Boolean
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 |
# File 'rational.c', line 1148
static VALUE
nurat_eqeq_p(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
get_dat1(self);
if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) {
if (INT_ZERO_P(dat->num) && INT_ZERO_P(other))
return Qtrue;
if (!FIXNUM_P(dat->den))
return Qfalse;
if (FIX2LONG(dat->den) != 1)
return Qfalse;
return rb_int_equal(dat->num, other);
}
else {
const double d = nurat_to_double(self);
return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other))));
}
}
else if (RB_FLOAT_TYPE_P(other)) {
const double d = nurat_to_double(self);
return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other))));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
{
get_dat2(self, other);
if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num))
return Qtrue;
return f_boolcast(rb_int_equal(adat->num, bdat->num) &&
rb_int_equal(adat->den, bdat->den));
}
}
else {
return rb_equal(other, self);
}
}
|
#abs ⇒ Object #magnitude ⇒ Object
Returns the absolute value of rat
.
(1/2r).abs #=> (1/2)
(-1/2r).abs #=> (1/2)
Rational#magnitude is an alias for Rational#abs.
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 |
# File 'rational.c', line 1254
VALUE
rb_rational_abs(VALUE self)
{
get_dat1(self);
if (INT_NEGATIVE_P(dat->num)) {
VALUE num = rb_int_abs(dat->num);
return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
}
return self;
}
|
#ceil([ndigits]) ⇒ Integer
Returns the smallest number greater than or equal to rat
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).ceil #=> 3
Rational(2, 3).ceil #=> 1
Rational(-3, 2).ceil #=> -1
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').ceil(+1).to_f #=> -123.4
Rational('-123.456').ceil(-1) #=> -120
1468 1469 1470 1471 1472 |
# File 'rational.c', line 1468
static VALUE
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_ceil);
}
|
#coerce(other) ⇒ Object
:nodoc:
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 |
# File 'rational.c', line 1190
static VALUE
nurat_coerce(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
}
else if (RB_FLOAT_TYPE_P(other)) {
return rb_assoc_new(other, nurat_to_f(self));
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
return rb_assoc_new(other, self);
}
else if (RB_TYPE_P(other, T_COMPLEX)) {
if (k_exact_zero_p(RCOMPLEX(other)->imag))
return rb_assoc_new(f_rational_new_bang1
(CLASS_OF(self), RCOMPLEX(other)->real), self);
else
return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
}
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
rb_obj_classname(other), rb_obj_classname(self));
return Qnil;
}
|
#denominator ⇒ Integer
610 611 612 613 614 615 |
# File 'rational.c', line 610
static VALUE
nurat_denominator(VALUE self)
{
get_dat1(self);
return dat->den;
}
|
#fdiv(numeric) ⇒ Float
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 |
# File 'rational.c', line 963
static VALUE
nurat_fdiv(VALUE self, VALUE other)
{
VALUE div;
if (f_zero_p(other))
return nurat_div(self, rb_float_new(0.0));
if (FIXNUM_P(other) && other == LONG2FIX(1))
return nurat_to_f(self);
div = nurat_div(self, other);
if (RB_TYPE_P(div, T_RATIONAL))
return nurat_to_f(div);
if (RB_FLOAT_TYPE_P(div))
return div;
return rb_funcall(div, idTo_f, 0);
}
|
#floor([ndigits]) ⇒ Integer
Returns the largest number less than or equal to rat
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).floor #=> 3
Rational(2, 3).floor #=> 0
Rational(-3, 2).floor #=> -2
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').floor(+1).to_f #=> -123.5
Rational('-123.456').floor(-1) #=> -130
1438 1439 1440 1441 1442 |
# File 'rational.c', line 1438
static VALUE
nurat_floor_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_floor);
}
|
#hash ⇒ Object
:nodoc:
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 |
# File 'rational.c', line 1745
static VALUE
nurat_hash(VALUE self)
{
st_index_t v, h[2];
VALUE n;
get_dat1(self);
n = rb_hash(dat->num);
h[0] = NUM2LONG(n);
n = rb_hash(dat->den);
h[1] = NUM2LONG(n);
v = rb_memhash(h, sizeof(h));
return ST2FIX(v);
}
|
#inspect ⇒ String
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 |
# File 'rational.c', line 1799
static VALUE
nurat_inspect(VALUE self)
{
VALUE s;
s = rb_usascii_str_new2("(");
rb_str_concat(s, f_format(self, f_inspect));
rb_str_cat2(s, ")");
return s;
}
|
#abs ⇒ Object #magnitude ⇒ Object
Returns the absolute value of rat
.
(1/2r).abs #=> (1/2)
(-1/2r).abs #=> (1/2)
Rational#magnitude is an alias for Rational#abs.
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 |
# File 'rational.c', line 1254
VALUE
rb_rational_abs(VALUE self)
{
get_dat1(self);
if (INT_NEGATIVE_P(dat->num)) {
VALUE num = rb_int_abs(dat->num);
return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
}
return self;
}
|
#marshal_dump ⇒ Object (private)
:nodoc:
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 |
# File 'rational.c', line 1838
static VALUE
nurat_marshal_dump(VALUE self)
{
VALUE a;
get_dat1(self);
a = rb_assoc_new(dat->num, dat->den);
rb_copy_generic_ivar(a, self);
return a;
}
|
#negative? ⇒ Boolean
Returns true
if rat
is less than 0.
1234 1235 1236 1237 1238 1239 |
# File 'rational.c', line 1234
static VALUE
nurat_negative_p(VALUE self)
{
get_dat1(self);
return f_boolcast(INT_NEGATIVE_P(dat->num));
}
|
#numerator ⇒ Integer
592 593 594 595 596 597 |
# File 'rational.c', line 592
static VALUE
nurat_numerator(VALUE self)
{
get_dat1(self);
return dat->num;
}
|
#positive? ⇒ Boolean
Returns true
if rat
is greater than 0.
1221 1222 1223 1224 1225 1226 |
# File 'rational.c', line 1221
static VALUE
nurat_positive_p(VALUE self)
{
get_dat1(self);
return f_boolcast(INT_POSITIVE_P(dat->num));
}
|
#/(numeric) ⇒ Numeric #quo(numeric) ⇒ Numeric
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
# File 'rational.c', line 915
static VALUE
nurat_div(VALUE self, VALUE other)
{
if (RB_INTEGER_TYPE_P(other)) {
if (f_zero_p(other))
rb_num_zerodiv();
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/');
}
}
else if (RB_FLOAT_TYPE_P(other)) {
VALUE v = nurat_to_f(self);
return rb_flo_div_flo(v, other);
}
else if (RB_TYPE_P(other, T_RATIONAL)) {
if (f_zero_p(other))
rb_num_zerodiv();
{
get_dat2(self, other);
if (f_one_p(self))
return f_rational_new_no_reduce2(CLASS_OF(self),
bdat->den, bdat->num);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/');
}
}
else {
return rb_num_coerce_bin(self, other, '/');
}
}
|
#rationalize ⇒ self #rationalize(eps) ⇒ Object
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 |
# File 'rational.c', line 1722
static VALUE
nurat_rationalize(int argc, VALUE *argv, VALUE self)
{
VALUE e, a, b, p, q;
if (rb_check_arity(argc, 0, 1) == 0)
return self;
if (nurat_negative_p(self))
return rb_rational_uminus(nurat_rationalize(argc, argv, rb_rational_uminus(self)));
e = f_abs(argv[0]);
a = f_sub(self, e);
b = f_add(self, e);
if (f_eqeq_p(a, b))
return self;
nurat_rationalize_internal(a, b, &p, &q);
return f_rational_new2(CLASS_OF(self), p, q);
}
|
#round([ndigits][, half: mode]) ⇒ Integer
Returns rat
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).round #=> 3
Rational(2, 3).round #=> 1
Rational(-3, 2).round #=> -2
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').round(+1).to_f #=> -123.5
Rational('-123.456').round(-1) #=> -120
The optional half
keyword argument is available similar to Float#round.
Rational(25, 100).round(1, half: :up) #=> (3/10)
Rational(25, 100).round(1, half: :down) #=> (1/5)
Rational(25, 100).round(1, half: :even) #=> (1/5)
Rational(35, 100).round(1, half: :up) #=> (2/5)
Rational(35, 100).round(1, half: :down) #=> (3/10)
Rational(35, 100).round(1, half: :even) #=> (2/5)
Rational(-25, 100).round(1, half: :up) #=> (-3/10)
Rational(-25, 100).round(1, half: :down) #=> (-1/5)
Rational(-25, 100).round(1, half: :even) #=> (-1/5)
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 |
# File 'rational.c', line 1541
static VALUE
nurat_round_n(int argc, VALUE *argv, VALUE self)
{
VALUE opt;
enum ruby_num_rounding_mode mode = (
argc = rb_scan_args(argc, argv, "*:", NULL, &opt),
rb_num_get_rounding_option(opt));
VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round);
return f_round_common(argc, argv, self, round_func);
}
|
#to_f ⇒ Float
1573 1574 1575 1576 1577 |
# File 'rational.c', line 1573
static VALUE
nurat_to_f(VALUE self)
{
return DBL2NUM(nurat_to_double(self));
}
|
#to_i ⇒ Integer
1293 1294 1295 1296 1297 1298 1299 1300 |
# File 'rational.c', line 1293
static VALUE
nurat_truncate(VALUE self)
{
get_dat1(self);
if (INT_NEGATIVE_P(dat->num))
return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
return rb_int_idiv(dat->num, dat->den);
}
|
#to_r ⇒ self
1588 1589 1590 1591 1592 |
# File 'rational.c', line 1588
static VALUE
nurat_to_r(VALUE self)
{
return self;
}
|
#to_s ⇒ String
1783 1784 1785 1786 1787 |
# File 'rational.c', line 1783
static VALUE
nurat_to_s(VALUE self)
{
return f_format(self, f_to_s);
}
|
#truncate([ndigits]) ⇒ Integer
Returns rat
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a rational when ndigits
is positive, otherwise returns an integer.
Rational(3).truncate #=> 3
Rational(2, 3).truncate #=> 0
Rational(-3, 2).truncate #=> -1
# decimal - 1 2 3 . 4 5 6
# ^ ^ ^ ^ ^ ^
# precision -3 -2 -1 0 +1 +2
Rational('-123.456').truncate(+1).to_f #=> -123.4
Rational('-123.456').truncate(-1) #=> -120
1498 1499 1500 1501 1502 |
# File 'rational.c', line 1498
static VALUE
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
{
return f_round_common(argc, argv, self, nurat_truncate);
}
|