Method: Array#sum
- Defined in:
- array.c
#sum(init = 0) ⇒ Numeric #sum(init = 0) {|e| ... } ⇒ Numeric
Returns the sum of elements. For example, [e1, e2, e3].sum returns init + e1 + e2 + e3.
If a block is given, the block is applied to each element before addition.
If ary is empty, it returns init.
[].sum #=> 0
[].sum(0.0) #=> 0.0
[1, 2, 3].sum #=> 6
[3, 5.5].sum #=> 8.5
[2.5, 3.0].sum(0.0) {|e| e * e } #=> 15.25
[Object.new].sum #=> TypeError
The (arithmetic) mean value of an array can be obtained as follows.
mean = ary.sum(0.0) / ary.length
This method can be used for non-numeric objects by explicit init argument.
["a", "b", "c"].sum("") #=> "abc"
[[1], [[2]], [3]].sum([]) #=> [1, [2], 3]
However, Array#join and Array#flatten is faster than Array#sum for array of strings and array of arrays.
["a", "b", "c"].join #=> "abc"
[[1], [[2]], [3]].flatten(1) #=> [1, [2], 3]
Array#sum method may not respect method redefinition of “+” methods such as Integer#+.
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 |
# File 'array.c', line 6564
static VALUE
rb_ary_sum(int argc, VALUE *argv, VALUE ary)
{
VALUE e, v, r;
long i, n;
int block_given;
v = (rb_check_arity(argc, 0, 1) ? argv[0] : LONG2FIX(0));
block_given = rb_block_given_p();
if (RARRAY_LEN(ary) == 0)
return v;
n = 0;
r = Qundef;
for (i = 0; i < RARRAY_LEN(ary); i++) {
e = RARRAY_AREF(ary, i);
if (block_given)
e = rb_yield(e);
if (FIXNUM_P(e)) {
n += FIX2LONG(e); /* should not overflow long type */
if (!FIXABLE(n)) {
v = rb_big_plus(LONG2NUM(n), v);
n = 0;
}
}
else if (RB_TYPE_P(e, T_BIGNUM))
v = rb_big_plus(e, v);
else if (RB_TYPE_P(e, T_RATIONAL)) {
if (r == Qundef)
r = e;
else
r = rb_rational_plus(r, e);
}
else
goto not_exact;
}
v = finish_exact_sum(n, r, v, argc!=0);
return v;
not_exact:
v = finish_exact_sum(n, r, v, i!=0);
if (RB_FLOAT_TYPE_P(e)) {
/*
* Kahan-Babuska balancing compensated summation algorithm
* See http://link.springer.com/article/10.1007/s00607-005-0139-x
*/
double f, c;
double x, t;
f = NUM2DBL(v);
c = 0.0;
goto has_float_value;
for (; i < RARRAY_LEN(ary); i++) {
e = RARRAY_AREF(ary, i);
if (block_given)
e = rb_yield(e);
if (RB_FLOAT_TYPE_P(e))
has_float_value:
x = RFLOAT_VALUE(e);
else if (FIXNUM_P(e))
x = FIX2LONG(e);
else if (RB_TYPE_P(e, T_BIGNUM))
x = rb_big2dbl(e);
else if (RB_TYPE_P(e, T_RATIONAL))
x = rb_num2dbl(e);
else
goto not_float;
if (isnan(f)) continue;
if (isnan(x)) {
f = x;
continue;
}
if (isinf(x)) {
if (isinf(f) && signbit(x) != signbit(f))
f = NAN;
else
f = x;
continue;
}
if (isinf(f)) continue;
t = f + x;
if (fabs(f) >= fabs(x))
c += ((f - t) + x);
else
c += ((x - t) + f);
f = t;
}
f += c;
return DBL2NUM(f);
not_float:
v = DBL2NUM(f);
}
goto has_some_value;
for (; i < RARRAY_LEN(ary); i++) {
e = RARRAY_AREF(ary, i);
if (block_given)
e = rb_yield(e);
has_some_value:
v = rb_funcall(v, idPLUS, 1, e);
}
return v;
}
|