Method: BigDecimal#n_significant_digits

Defined in:
bigdecimal.c

#n_significant_digitsInteger

Returns the number of decimal significant digits in self.

BigDecimal("0").n_significant_digits         # => 0
BigDecimal("1").n_significant_digits         # => 1
BigDecimal("1.1").n_significant_digits       # => 2
BigDecimal("3.1415").n_significant_digits    # => 5
BigDecimal("-1e20").n_significant_digits     # => 1
BigDecimal("1e-20").n_significant_digits     # => 1
BigDecimal("Infinity").n_significant_digits  # => 0
BigDecimal("-Infinity").n_significant_digits # => 0
BigDecimal("NaN").n_significant_digits       # => 0

Returns:



711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
# File 'bigdecimal.c', line 711

static VALUE
BigDecimal_n_significant_digits(VALUE self)
{
    ENTER(1);

    Real *p;
    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpIsZero(p) || !VpIsDef(p)) {
        return INT2FIX(0);
    }

    ssize_t n = p->Prec;  /* The length of frac without trailing zeros. */
    for (n = p->Prec; n > 0 && p->frac[n-1] == 0; --n);
    if (n == 0) return INT2FIX(0);

    DECDIG x;
    int nlz = BASE_FIG;
    for (x = p->frac[0]; x > 0; x /= 10) --nlz;

    int ntz = 0;
    for (x = p->frac[n-1]; x > 0 && x % 10 == 0; x /= 10) ++ntz;

    ssize_t n_significant_digits = BASE_FIG*n - nlz - ntz;
    return SSIZET2NUM(n_significant_digits);
}