Class: Transformers::Mpnet::MPNetModel
- Inherits:
-
MPNetPreTrainedModel
- Object
- Torch::NN::Module
- PreTrainedModel
- MPNetPreTrainedModel
- Transformers::Mpnet::MPNetModel
- Defined in:
- lib/transformers/models/mpnet/modeling_mpnet.rb
Instance Attribute Summary
Attributes inherited from PreTrainedModel
Instance Method Summary collapse
- #_prune_heads(heads_to_prune) ⇒ Object
- #forward(input_ids: nil, attention_mask: nil, position_ids: nil, head_mask: nil, inputs_embeds: nil, output_attentions: nil, output_hidden_states: nil, return_dict: nil, **kwargs) ⇒ Object
- #get_input_embeddings ⇒ Object
-
#initialize(config, add_pooling_layer: true) ⇒ MPNetModel
constructor
A new instance of MPNetModel.
- #set_input_embeddings(value) ⇒ Object
Methods inherited from MPNetPreTrainedModel
Methods inherited from PreTrainedModel
#_backward_compatibility_gradient_checkpointing, #_init_weights, #_initialize_weights, #base_model, #can_generate, #dequantize, #dummy_inputs, #framework, from_pretrained, #get_output_embeddings, #init_weights, #post_init, #prune_heads, #tie_weights, #warn_if_padding_and_no_attention_mask
Methods included from ClassAttribute
Methods included from Transformers::ModuleUtilsMixin
#device, #get_extended_attention_mask, #get_head_mask
Constructor Details
#initialize(config, add_pooling_layer: true) ⇒ MPNetModel
Returns a new instance of MPNetModel.
384 385 386 387 388 389 390 391 392 393 394 |
# File 'lib/transformers/models/mpnet/modeling_mpnet.rb', line 384 def initialize(config, add_pooling_layer: true) super(config) @config = config @embeddings = MPNetEmbeddings.new(config) @encoder = MPNetEncoder.new(config) @pooler = add_pooling_layer ? MPNetPooler.new(config) : nil # Initialize weights and apply final processing post_init end |
Instance Method Details
#_prune_heads(heads_to_prune) ⇒ Object
404 405 406 407 408 |
# File 'lib/transformers/models/mpnet/modeling_mpnet.rb', line 404 def _prune_heads(heads_to_prune) heads_to_prune.each do |layer, heads| @encoder.layer[layer].attention.prune_heads(heads) end end |
#forward(input_ids: nil, attention_mask: nil, position_ids: nil, head_mask: nil, inputs_embeds: nil, output_attentions: nil, output_hidden_states: nil, return_dict: nil, **kwargs) ⇒ Object
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# File 'lib/transformers/models/mpnet/modeling_mpnet.rb', line 410 def forward( input_ids: nil, attention_mask: nil, position_ids: nil, head_mask: nil, inputs_embeds: nil, output_attentions: nil, output_hidden_states: nil, return_dict: nil, **kwargs ) output_attentions = !output_attentions.nil? ? output_attentions : @config.output_attentions output_hidden_states = !output_hidden_states.nil? ? output_hidden_states : @config.output_hidden_states return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict if !input_ids.nil? && !.nil? raise ArgumentError, "You cannot specify both input_ids and inputs_embeds at the same time" elsif !input_ids.nil? warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size elsif !.nil? input_shape = .size[...-1] else raise ArgumentError, "You have to specify either input_ids or inputs_embeds" end device = !input_ids.nil? ? input_ids.device : .device if attention_mask.nil? attention_mask = Torch.ones(input_shape, device: device) end extended_attention_mask = get_extended_attention_mask(attention_mask, input_shape) head_mask = get_head_mask(head_mask, @config.num_hidden_layers) = @embeddings.(input_ids: input_ids, position_ids: position_ids, inputs_embeds: ) encoder_outputs = @encoder.(, attention_mask: extended_attention_mask, head_mask: head_mask, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict) sequence_output = encoder_outputs[0] pooled_output = !@pooler.nil? ? @pooler.(sequence_output) : nil if !return_dict return [sequence_output, pooled_output] + encoder_outputs[1..] end BaseModelOutputWithPooling.new(last_hidden_state: sequence_output, pooler_output: pooled_output, hidden_states: encoder_outputs.hidden_states, attentions: encoder_outputs.attentions) end |
#get_input_embeddings ⇒ Object
396 397 398 |
# File 'lib/transformers/models/mpnet/modeling_mpnet.rb', line 396 def @embeddings. end |
#set_input_embeddings(value) ⇒ Object
400 401 402 |
# File 'lib/transformers/models/mpnet/modeling_mpnet.rb', line 400 def (value) @word_embeddings = value end |