Module: TraceVisualization::SuffixArray
- Defined in:
- lib/trace_visualization/suffix_array.rb
Class Method Summary collapse
- .effective(str) ⇒ Object
-
.effective_linear(s, suffix_array, n, alphabet_size) ⇒ Object
by Juha Karkkainen, Peter Sanders and Stefan Burkhardt.
- .naive(str) ⇒ Object
Class Method Details
.effective(str) ⇒ Object
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# File 'lib/trace_visualization/suffix_array.rb', line 22 def self.effective(str) n = str.length s = [] if str.instance_of? String str.each_char { |c| s << c.ord } elsif str.instance_of? Array str.each { |c| s << c.ord } else s = str end 3.times { s << 0 } suffix_array = Array.new(n + 3, 0) effective_linear(s, suffix_array, n, s.max + 1) 3.times { s.pop } suffix_array[0 ... -3] end |
.effective_linear(s, suffix_array, n, alphabet_size) ⇒ Object
by Juha Karkkainen, Peter Sanders and Stefan Burkhardt
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# File 'lib/trace_visualization/suffix_array.rb', line 48 def self.effective_linear(s, suffix_array, n, alphabet_size) n0 = (n + 2) / 3 n1 = (n + 1) / 3 n2 = n / 3 n02 = n0 + n2 s12 = Array.new(n02 + 3, 0) sa12 = Array.new(n02 + 3, 0) s0 = Array.new(n0, 0) sa0 = Array.new(n0, 0) # Generate positions of mod 1 and mod 2 suffixes # the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1 i = j = 0 while (i < n + (n0 - n1)) if i % 3 != 0 s12[j] = i j += 1 end i += 1 end # LSB radix sort the mod 1 and mod 2 triples radix_pass(s12, sa12, s[2 ... s.length], n02, alphabet_size) radix_pass(sa12, s12, s[1 ... s.length], n02, alphabet_size) radix_pass(s12, sa12, s, n02, alphabet_size) # Find lexicographic names of triples name, c0, c1, c2 = 0, -1, -1, -1 for i in 0 ... n02 if (s[sa12[i]] != c0 || s[sa12[i] + 1] != c1 || s[sa12[i] + 2] != c2) name += 1 c0 = s[sa12[i]] c1 = s[sa12[i] + 1] c2 = s[sa12[i] + 2] end if (sa12[i] % 3 == 1) s12[sa12[i]/3] = name # Left half else s12[sa12[i]/3 + n0] = name # Right half end end # Recurse if names are not yet unique if name < n02 effective_linear(s12, sa12, n02, name) # Store unique names in s12 using the suffix array for i in 0 ... n02 s12[sa12[i]] = i + 1 end else # Generate the suffix array of s12 directly for i in 0 ... n02 sa12[s12[i] - 1] = i end end # Stably sort the mod 0 suffixes from sa12 by their first character i, j = 0, 0 while i < n02 if sa12[i] < n0 s0[j] = 3 * sa12[i] j += 1 end i += 1 end radix_pass(s0, sa0, s, n0, alphabet_size) # Merge sorted sa0 suffixes and sorted sa12 suffixes p, t, k = 0, n0 - n1, 0 while k < n # Pos of current offset 12 suffix i = get_i(n0, sa12, t) # Pos of current offset 0 suffix j = sa0[p] # Different compares for mod 1 and mod 2 suffixes if (sa12[t] < n0 ? leq_pairs(s[i], s12[sa12[t] + n0], s[j], s12[j/3]) : leq_triples(s[i], s[i + 1], s12[sa12[t] - n0 + 1], s[j], s[j + 1], s12[j/3 + n0])) suffix_array[k] = i t += 1 if t == n02 # Done: only sa0 suffixes left k += 1 while p < n0 suffix_array[k] = sa0[p] p += 1 k += 1 end end else suffix_array[k] = j p += 1; if p == n0 # Done: only sa12 suffixes left k += 1 while t < n02 suffix_array[k] = get_i(n0, sa12, t) t += 1 k += 1 end end end k += 1 end end |
.naive(str) ⇒ Object
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
# File 'lib/trace_visualization/suffix_array.rb', line 3 def self.naive(str) n = str.length tmp = Array.new(n) result = Array.new(n) for i in 0 ... n tmp[i] = [str[i .. -1], i] end tmp.sort! { |x, y| x[0] <=> y[0] } for i in 0 ... n result[i] = tmp[i][1] end result end |