Module: RubyBrain::Trainer
- Defined in:
- lib/ruby_brain.rb,
lib/ruby_brain/trainer.rb
Class Method Summary collapse
- .learn2(network_structure, input_training_set, output_training_set) ⇒ Object
- .normal_learning(network_structure, input_training_set, output_training_set, options = {}) ⇒ Object
- .stack_learning(network_structure, input_training_set, output_training_set) ⇒ Object
Class Method Details
.learn2(network_structure, input_training_set, output_training_set) ⇒ Object
27 28 29 30 31 32 33 34 35 36 37 38 |
# File 'lib/ruby_brain/trainer.rb', line 27 def learn2(network_structure, input_training_set, output_training_set) network = RubyBrain::Network.new(network_structure) network.learning_rate = 0.05 network.init_network network.learn2(input_training_set, output_training_set, max_training_count=5000, tolerance=0.045) puts network.dump_weights_to_yaml input_training_set.each do |inputs| pp network.get_forward_outputs(inputs)[0] end end |
.normal_learning(network_structure, input_training_set, output_training_set, options = {}) ⇒ Object
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
# File 'lib/ruby_brain/trainer.rb', line 6 def normal_learning(network_structure, input_training_set, output_training_set, ={}) = {learning_rate: 0.05, max_training_count: 5000, tolerance: 0.045, initial_weights_file: nil} = .merge() puts "===== normal learnng =====" pp network = RubyBrain::Network.new(network_structure) network.learning_rate = [:learning_rate] network.init_network if [:initial_weights_file] puts "loading weights from #{[:initial_weights_file]}" network.load_weights_from_yaml_file([:initial_weights_file]) end network.learn(input_training_set, output_training_set, max_training_count=[:max_training_count], tolerance=[:tolerance]) network.dump_weights_to_yaml("weights_#{network_structure.join('_')}_#{Time.now.to_i}.yml") # input_training_set.each do |inputs| # puts network.get_forward_outputs(inputs).join(',') # end end |
.stack_learning(network_structure, input_training_set, output_training_set) ⇒ Object
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# File 'lib/ruby_brain/trainer.rb', line 40 def stack_learning(network_structure, input_training_set, output_training_set) ws = Array.new(network_structure.size-1, nil) (1..(network_structure.size-2)).each do |i| next_network_form = network_structure[0..i] + [network_structure[-1]] neuralnet = RubyBrain::Network.new(next_network_form) neuralnet.learning_rate = 0.05 neuralnet.init_network neuralnet.overwrite_weights(ws) # neuralnet.learn_only_specified_layer(-1, input_training_set, output_training_set, max_training_count=1000, tolerance=0.06) neuralnet.learn2(input_training_set, output_training_set, max_training_count=500, tolerance=0.006) ws = neuralnet.get_weights_as_array ws[-1] = nil end neuralnet = RubyBrain::Network.new(network_structure) neuralnet.learning_rate = 0.05 neuralnet.init_network neuralnet.overwrite_weights(ws) neuralnet.learn(input_training_set, output_training_set, max_training_count=2000, tolerance=0.0036) # neuralnet.learn2(input_training_set, output_training_set, max_training_count=1000, tolerance=0.036) puts neuralnet.dump_weights_to_yaml input_training_set.each do |inputs| pp neuralnet.get_forward_outputs(inputs)[0] end puts "===================================================================================================" input_training_set.each do |inputs| pp neuralnet.get_forward_outputs(inputs)[1] end end |