Class: Spark::Mllib::LogisticRegressionWithSGD
- Inherits:
-
ClassificationMethodBase
- Object
- RegressionMethodBase
- ClassificationMethodBase
- Spark::Mllib::LogisticRegressionWithSGD
- Defined in:
- lib/spark/mllib/classification/logistic_regression.rb
Constant Summary collapse
- DEFAULT_OPTIONS =
{ iterations: 100, step: 1.0, mini_batch_fraction: 1.0, initial_weights: nil, reg_param: 0.01, reg_type: 'l2', intercept: false }
Class Method Summary collapse
-
.train(rdd, options = {}) ⇒ Object
Train a logistic regression model on the given data.
Class Method Details
.train(rdd, options = {}) ⇒ Object
Train a logistic regression model on the given data.
Arguments:
- rdd
-
The training data, an RDD of LabeledPoint.
- iterations
-
The number of iterations (default: 100).
- step
-
The step parameter used in SGD (default: 1.0).
- mini_batch_fraction
-
Fraction of data to be used for each SGD iteration.
- initial_weights
-
The initial weights (default: nil).
- reg_param
-
The regularizer parameter (default: 0.01).
- reg_type
-
The type of regularizer used for training our model (default: “l2”).
Allowed values:
-
“l1” for using L1 regularization
-
“l2” for using L2 regularization
-
nil for no regularization
-
- intercept
-
Boolean parameter which indicates the use or not of the augmented representation for training data (i.e. whether bias features are activated or not).
138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# File 'lib/spark/mllib/classification/logistic_regression.rb', line 138 def self.train(rdd, ={}) super weights, intercept = Spark.jb.call(RubyMLLibAPI.new, 'trainLogisticRegressionModelWithSGD', rdd, [:iterations].to_i, [:step].to_f, [:mini_batch_fraction].to_f, [:initial_weights], [:reg_param].to_f, [:reg_type], [:intercept]) LogisticRegressionModel.new(weights, intercept) end |