Class: Chainer::Training::Extensions::Evaluator
- Inherits:
-
Chainer::Training::Extension
- Object
- Chainer::Training::Extension
- Chainer::Training::Extensions::Evaluator
- Defined in:
- lib/chainer/training/extensions/evaluator.rb
Overview
Trainer extension to evaluate models on a validation set. This extension evaluates the current models by a given evaluation function.
It creates a Chainer::Reporter object to store values observed in the evaluation function on each iteration. The report for all iterations are aggregated to Chainer::DictSummary. The collected mean values are further reported to the reporter object of the trainer, where the name of each observation is prefixed by the evaluator name. See Chainer::Reporter for details in naming rules of the reports.
Evaluator has a structure to customize similar to that of Chainer::Training::StandardUpdater. The main differences are:
-
There are no optimizers in an evaluator. Instead, it holds links to evaluate.
-
An evaluation loop function is used instead of an update function.
-
Preparation routine can be customized, which is called before each evaluation. It can be used, e.g., to initialize the state of stateful recurrent networks.
There are two ways to modify the evaluation behavior besides setting a custom evaluation function. One is by setting a custom evaluation loop via the ‘eval_func` argument. The other is by inheriting this class and overriding the `evaluate` method. In latter case, users have to create and handle a reporter object manually. Users also have to copy the iterators before using them, in order to reuse them at the next time of evaluation. In both cases, the functions are called in testing mode (i.e., `chainer.config.train` is set to `false`).
This extension is called at the end of each epoch by default.
Constant Summary
Constants inherited from Chainer::Training::Extension
Chainer::Training::Extension::PRIORITY_EDITOR, Chainer::Training::Extension::PRIORITY_READER, Chainer::Training::Extension::PRIORITY_WRITER
Instance Attribute Summary
Attributes inherited from Chainer::Training::Extension
Instance Method Summary collapse
-
#call(trainer = nil) ⇒ Object
Executes the evaluator extension.
- #default_name ⇒ Object
-
#evaluate ⇒ Object
Evaluates the model and returns a result dictionary.
-
#initialize(iterator, target, converter: nil, device: nil, eval_hook: nil, eval_func: nil) ⇒ Evaluator
constructor
A new instance of Evaluator.
Constructor Details
#initialize(iterator, target, converter: nil, device: nil, eval_hook: nil, eval_func: nil) ⇒ Evaluator
Returns a new instance of Evaluator.
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/chainer/training/extensions/evaluator.rb', line 43 def initialize(iterator, target, converter: nil, device: nil, eval_hook: nil, eval_func: nil) @priority = Extension::PRIORITY_WRITER @trigger = [1, 'epoch'] if iterator.kind_of?(Dataset::Iterator) iterator = { main: iterator } end @iterators = iterator if target.kind_of?(Link) target = { main: target } end @targets = target @converter = converter || Dataset::Convert.method(:concat_examples) @device = device @eval_hook = eval_hook @eval_func = eval_func end |
Instance Method Details
#call(trainer = nil) ⇒ Object
Executes the evaluator extension.
Unlike usual extensions, this extension can be executed without passing a trainer object. This extension reports the performance on validation dataset using the ‘Chainer.report` function. Thus, users can use this extension independently from any trainer by manually configuring a `Chainer::Reporter` object.
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# File 'lib/chainer/training/extensions/evaluator.rb', line 71 def call(trainer = nil) reporter = Reporter.new prefix = self.respond_to?(:name) ? "#{self.name}/" : "" @targets.each do |name, target| reporter.add_observer("#{prefix}#{name}", target) reporter.add_observers("#{prefix}#{name}", target.method(:namedlinks), skipself: true) end result = nil reporter.scope(reporter.observation) do old_train = Chainer.configuration.train Chainer.configuration.train = false result = evaluate() Chainer.configuration.train = old_train end Reporter.save_report(result) return result end |
#default_name ⇒ Object
139 140 141 |
# File 'lib/chainer/training/extensions/evaluator.rb', line 139 def default_name "validation" end |
#evaluate ⇒ Object
Evaluates the model and returns a result dictionary. This method runs the evaluation loop over the validation dataset. It accumulates the reported values to ‘DictSummary` and returns a dictionary whose values are means computed by the summary.
Users can override this method to customize the evaluation routine.
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# File 'lib/chainer/training/extensions/evaluator.rb', line 98 def evaluate iterator = @iterators[:main] target = @targets[:main] eval_func = @eval_func || target @eval_hook.(self) if @eval_hook if iterator.respond_to?(:reset) iterator.reset it = iterator else it = iterator.dup end summary = DictSummary.new until it.is_new_epoch do batch = it.next observation = {} Reporter.report_scope(observation) do in_arrays = @converter.(batch, device: @device) old_enable_backprop = Chainer.configuration.enable_backprop Chainer.configuration.enable_backprop = false if in_arrays.kind_of?(Array) eval_func.(*in_arrays) elsif in_arrays.kind_of?(Hash) eval_func.(**in_arrays) else eval_func.(in_arrays) end Chainer.configuration.enable_backprop = old_enable_backprop end summary.add(observation) end summary.compute_mean() end |