Class: Panomosity::Panorama
- Inherits:
-
Object
- Object
- Panomosity::Panorama
- Includes:
- Utils
- Defined in:
- lib/panomosity/panorama.rb
Instance Attribute Summary collapse
-
#control_points ⇒ Object
Returns the value of attribute control_points.
-
#images ⇒ Object
Returns the value of attribute images.
-
#logger ⇒ Object
Returns the value of attribute logger.
-
#optimisation_variables ⇒ Object
Returns the value of attribute optimisation_variables.
-
#options ⇒ Object
Returns the value of attribute options.
-
#variable ⇒ Object
Returns the value of attribute variable.
Instance Method Summary collapse
- #attributes ⇒ Object
- #calculate_neighborhoods ⇒ Object
- #calibration? ⇒ Boolean
- #clean_control_points ⇒ Object
- #create_calibration_report ⇒ Object
- #diagnose ⇒ Object
- #fix_unconnected_image_pairs ⇒ Object
- #generate_control_points(pair: nil, bad_control_point: nil, message: '') ⇒ Object
- #get_neighborhood_info ⇒ Object
-
#initialize(input, options = {}) ⇒ Panorama
constructor
A new instance of Panorama.
- #save_file(filename) ⇒ Object
Methods included from Utils
#calculate_average, #calculate_average_and_std, #remove_outliers
Constructor Details
#initialize(input, options = {}) ⇒ Panorama
Returns a new instance of Panorama.
9 10 11 12 13 14 15 16 17 18 19 |
# File 'lib/panomosity/panorama.rb', line 9 def initialize(input, = {}) @input = input @options = @options[:verbosity] ||= 0 @images = Image.parse(@input) @variable = PanoramaVariable.parse(@input).first ControlPoint.parse(@input) @control_points = ControlPoint.calculate_distances(@images, @variable) @optimisation_variables = OptimisationVariable.parse(@input) @logger = Panomosity.logger end |
Instance Attribute Details
#control_points ⇒ Object
Returns the value of attribute control_points.
7 8 9 |
# File 'lib/panomosity/panorama.rb', line 7 def control_points @control_points end |
#images ⇒ Object
Returns the value of attribute images.
7 8 9 |
# File 'lib/panomosity/panorama.rb', line 7 def images @images end |
#logger ⇒ Object
Returns the value of attribute logger.
7 8 9 |
# File 'lib/panomosity/panorama.rb', line 7 def logger @logger end |
#optimisation_variables ⇒ Object
Returns the value of attribute optimisation_variables.
7 8 9 |
# File 'lib/panomosity/panorama.rb', line 7 def optimisation_variables @optimisation_variables end |
#options ⇒ Object
Returns the value of attribute options.
7 8 9 |
# File 'lib/panomosity/panorama.rb', line 7 def @options end |
#variable ⇒ Object
Returns the value of attribute variable.
7 8 9 |
# File 'lib/panomosity/panorama.rb', line 7 def variable @variable end |
Instance Method Details
#attributes ⇒ Object
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# File 'lib/panomosity/panorama.rb', line 352 def attributes calculate_neighborhoods control_points = self.control_points.dup control_points.each_with_index { |cp, i| cp[:id] = i } neighborhoods = GeneralizedNeighborhood.neighborhoods.dup neighborhoods.each_with_index { |n, i| n.id = i } types = %i(horizontal vertical) similar_neighborhoods = types.map { |type| GeneralizedNeighborhood.similar_neighborhoods(type: type) }.flatten neighborhoods_by_similar_neighborhood = types.map { |type| GeneralizedNeighborhood.neighborhoods_by_similar_neighborhood(type: type) }.flatten { images: images.map(&:attributes), variable: variable.attributes, control_points: control_points.map(&:attributes), optimisation_variables: optimisation_variables.map(&:attributes), pairs: Pair.all.map(&:attributes), similar_neighborhoods: similar_neighborhoods.map(&:attributes), neighborhoods_by_similar_neighborhood: neighborhoods_by_similar_neighborhood.map(&:attributes) } end |
#calculate_neighborhoods ⇒ Object
21 22 23 |
# File 'lib/panomosity/panorama.rb', line 21 def calculate_neighborhoods GeneralizedNeighborhood.calculate_all(panorama: self, options: ) end |
#calibration? ⇒ Boolean
336 337 338 |
# File 'lib/panomosity/panorama.rb', line 336 def calibration? !!@input.split(/\n/).find { |line| line == '#panomosity calibration true' } end |
#clean_control_points ⇒ Object
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
# File 'lib/panomosity/panorama.rb', line 25 def clean_control_points .merge!(distances: { x1: 30, x2: 30 }) if calibration? && ![:distances].nil? .merge!(regional_distance_similarities_count: 2) unless [:regional_distance_similarities_count] calculate_neighborhoods control_points_to_keep = Pair.select_control_points_with_regional_distance_similarities bad_control_points = control_points.reject { |cp| control_points_to_keep.map(&:raw).include?(cp.raw) } # far_control_points = control_points.select { |cp| cp.prdist > 50 } control_points_to_clean = bad_control_points.uniq(&:raw) # log warnings control_point_ratio = control_points_to_clean.count.to_f / control_points.count logger.warn "Removing more than 30% (#{(control_point_ratio * 100).round(4)}%) of control points. May potentially cause issues." if control_point_ratio >= 0.3 control_point_pair_ratio = Pair.without_enough_control_points(ignore_connected: true).count.to_f / Pair.all.count logger.warn "More than 50% (#{(control_point_pair_ratio * 100).round(4)}%) of pairs have fewer than 3 control points. May potentially cause issues." if control_point_pair_ratio >= 0.5 control_points_to_clean end |
#create_calibration_report ⇒ Object
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# File 'lib/panomosity/panorama.rb', line 304 def create_calibration_report # create a file if one doesn't exist filename = 'calibration_report.json' unless File.file?(filename) logger.info 'creating calibration_report.json since one does not exist' File.open(filename, 'w+') { |f| f.puts '{}' } end calibration_report = JSON.parse(File.read(filename)) if @options[:report_type] == 'position' .merge!(distances: { x1: 30, x2: 30 }) if calibration? && ![:distances].nil? calculate_neighborhoods xh_avg = GeneralizedNeighborhood.horizontal.first.x_avg yh_avg = GeneralizedNeighborhood.horizontal.first.y_avg xv_avg = GeneralizedNeighborhood.vertical.first.x_avg yv_avg = GeneralizedNeighborhood.vertical.first.y_avg calibration_report['position'] = { xh_avg: xh_avg, yh_avg: yh_avg, xv_avg: xv_avg, yv_avg: yv_avg } else calibration_report['roll'] = images.first.r end logger.info 'writing calibration_report.json' File.open(filename, 'w+') { |f| f.puts calibration_report.to_json } end |
#diagnose ⇒ Object
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# File 'lib/panomosity/panorama.rb', line 154 def diagnose calculate_neighborhoods recommendations = [] = [] logger.debug "total number of control points: #{control_points.count}" logger.debug "total number of generated control points: #{control_points.select(&:generated?).count}" logger.debug "total number of not generated control points: #{control_points.select(&:not_generated?).count}" control_point_pair_ratio = Pair.without_enough_control_points(ignore_connected: true).count.to_f / Pair.all.count if control_point_pair_ratio >= 0.5 = <<~MESSAGE More than 50% (#{(control_point_pair_ratio*100).round(4)}%) of pairs have fewer than 3 control points. May potentially cause issues. MESSAGE logger.warn << end control_point_generated_ratio = control_points.select(&:generated?).count.to_f / control_points.select(&:not_generated?).count if control_point_generated_ratio >= 0.3 = <<~MESSAGE More than 30% (#{(control_point_generated_ratio*100).round(4)}%) control points were generated. This indicates a failure to find control points between images pairs due to poor lighting or insufficient complexity. MESSAGE logger.warn << end # neighborhood group tests group_count = GeneralizedNeighborhood.horizontal.count if group_count < 5 = <<~MESSAGE Total number of horizontal neighborhood groups is #{group_count} which is very low. This can mean either low variation in control points distances or that not enough control points could be found. MESSAGE logger.warn << end group_std_avg = calculate_average(values: GeneralizedNeighborhood.horizontal[0..4].map(&:dist_std)) if group_std_avg > 1.0 = <<~MESSAGE The standard deviation of distances in the top 5 horizontal neighborhood groups is #{group_std_avg} which is high. The standard deviation implies that control points neighborhoods making up this group can vary more than 1.0 in distance. On highly optimized images (with many good control points) this standard deviation should be near 0. This could mean that even after optimization, there may be a seam on an individual pair. This also means that the images may represent a 3D object that has perspective differences. MESSAGE logger.warn << end group_control_points = GeneralizedNeighborhood.horizontal.first.control_points.count total_control_points = Pair.horizontal.map(&:control_points).flatten.uniq(&:raw).count group_control_point_ratio = group_control_points.to_f / total_control_points if group_control_point_ratio < 0.2 = <<~MESSAGE Less than 20% (#{(group_control_point_ratio*100).round(4)}%) of horizontal control points in the best horizontal neighborhood group (#{group_control_points}) make up the total number of horizontal control points (#{total_control_points}). This means panosmosity failed to find a neighborhood group that would include enough similarities between control point distances. There will very likely be seams horizontally. MESSAGE logger.warn << recommendations << 'horizontal' end group_count = GeneralizedNeighborhood.vertical.count if group_count < 5 = <<~MESSAGE Total number of vertical neighborhood groups is #{group_count} which is very low. This can mean either low variation in control points distances or that not enough control points could be found. MESSAGE logger.warn << end group_std_avg = calculate_average(values: GeneralizedNeighborhood.vertical[0..4].map(&:dist_std)) if group_std_avg > 1.0 = <<~MESSAGE The standard deviation of distances in the top 5 vertical neighborhood groups is #{group_std_avg} which is high. The standard deviation implies that control points neighborhoods making up this group can vary more than 1.0 in distance. On highly optimized images (with many good control points) this standard deviation should be near 0. This could mean that even after optimization, there may be a seam on an individual pair. This also means that the images may represent a 3D object that has perspective differences. MESSAGE logger.warn << end group_control_points = GeneralizedNeighborhood.vertical.first.control_points.count total_control_points = Pair.vertical.map(&:control_points).flatten.uniq(&:raw).count group_control_point_ratio = group_control_points.to_f / total_control_points if group_control_point_ratio < 0.2 = <<~MESSAGE Less than 20% (#{(group_control_point_ratio*100).round(4)}%) of vertical control points in the best vertical neighborhood group (#{group_control_points}) make up the total number of vertical control points (#{total_control_points}). This means panosmosity failed to find a neighborhood group that would include enough similarities between control point distances. There will very likely be seams vertically. MESSAGE logger.warn recommendations << 'vertical' end logger.info 'creating diagnostic_report.json' pair = Pair.horizontal.first delta_d = pair.first_image.d - pair.last_image.d roll = pair.first_image.r pair = Pair.vertical.first delta_e = pair.first_image.e - pair.last_image.e diagnostic_report = { messages: , recommendations: recommendations, data: { delta_d: delta_d, delta_e: delta_e, roll: roll, horizontal: GeneralizedNeighborhood.horizontal.first.attributes, vertical: GeneralizedNeighborhood.vertical.first.attributes } } rescue => error = "Got error #{error.} when calculating neighborhoods. Recommending fallback" logger.error error.backtrace.each { |line| logger.error line } recommendations = %w(horizontal vertical) diagnostic_report = { messages: , recommendations: recommendations, data: {} } ensure File.open('diagnostic_report.json', 'w+') { |f| f.puts diagnostic_report.to_json } if recommendations.empty? logger.warn 'No recommendations' puts 'none' else logger.warn 'Recommendations are to regenerate with control points generated from calibration cards:' puts recommendations.join(',') end end |
#fix_unconnected_image_pairs ⇒ Object
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# File 'lib/panomosity/panorama.rb', line 44 def fix_unconnected_image_pairs logger.info 'finding unconnected image pairs' .merge!(distances: { x1: 30, x2: 30 }) if calibration? && ![:distances].nil? calculate_neighborhoods unconnected_image_pairs = Pair.unconnected logger.debug unconnected_image_pairs.map { |i| { type: i.type, pair: i.pair.map(&:id) } } logger.info 'finding control points with unrealistic distances (<1)' bad_control_points = control_points.select { |cp| cp.pdist <= 1.0 } logger.info 'adding pairs that have do not have enough control points (<3)' changing_control_points_pairs = Pair.without_enough_control_points changed_pairs = [] logger.info 'writing new control points' control_point_lines_started = false @lines = @input.each_line.map do |line| cp = ControlPoint.parse_line(line) if cp.nil? # Control point lines ended if control_point_lines_started control_point_lines_started = false unconnected_image_pairs.map do |pair| generate_control_points(pair: pair, message: 'adding control points connecting') end + [line] else next line end else control_point_lines_started = true bad_control_point = bad_control_points.find { |c| c.raw == line } changing_control_point_pair = changing_control_points_pairs.find { |pair| pair.control_points.find { |c| c.raw == line } } if bad_control_point generate_control_points(bad_control_point: bad_control_point, message: 'replacing unrealistic control point connecting') elsif changing_control_point_pair && !changed_pairs.include?(changing_control_point_pair.to_s) changed_pairs << changing_control_point_pair.to_s bad_control_point = changing_control_point_pair.control_points.first generate_control_points(bad_control_point: bad_control_point, message: 'adding control points connecting') else next line end end end.compact.flatten end |
#generate_control_points(pair: nil, bad_control_point: nil, message: '') ⇒ Object
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# File 'lib/panomosity/panorama.rb', line 91 def generate_control_points(pair: nil, bad_control_point: nil, message: '') if pair if pair.horizontal? group = GeneralizedNeighborhood.horizontal.first else group = GeneralizedNeighborhood.vertical.first end else if bad_control_point.conn_type == :horizontal group = GeneralizedNeighborhood.horizontal.first else group = GeneralizedNeighborhood.vertical.first end end control_point = ControlPoint.new(group.center.center.attributes(raw: true)) if pair control_point[:n] = pair.first_image.id control_point[:N] = pair.last_image.id else control_point[:n] = bad_control_point[:n] control_point[:N] = bad_control_point[:N] end image_1 = images.find { |i| i.id == control_point[:n] } image_2 = images.find { |i| i.id == control_point[:N] } x_diff = group.x_avg + (image_2.d - image_1.d) y_diff = group.y_avg + (image_2.e - image_1.e) x1 = x_diff <= 0 ? -x_diff + 15 : 0 y1 = y_diff <= 0 ? -y_diff + 15 : 0 control_point[:x] = x1 control_point[:X] = x1 + x_diff control_point[:y] = y1 control_point[:Y] = y1 + y_diff logger.info "#{} #{control_point.n1} <> #{control_point.n2}" i = images.first 3.times.map do if control_point.conn_type == :horizontal control_point[:y] += i.h * 0.25 control_point[:Y] += i.h * 0.25 else control_point[:x] += i.w * 0.25 control_point[:X] += i.w * 0.25 end # marks the control point as generated control_point[:g] = 0 control_point.to_s end.join end |
#get_neighborhood_info ⇒ Object
147 148 149 150 151 152 |
# File 'lib/panomosity/panorama.rb', line 147 def get_neighborhood_info Pair.calculate_neighborhoods(self) Pair.calculate_neighborhood_groups Pair.info NeighborhoodGroup.info end |
#save_file(filename) ⇒ Object
340 341 342 343 344 345 346 347 348 349 350 |
# File 'lib/panomosity/panorama.rb', line 340 def save_file(filename) logger.info "saving file #{filename}" lines = @input.each_line.map do |line| objects = [images, variable, control_points, optimisation_variables].flatten object = objects.find { |object| object.raw == line } object&.to_s || line end.compact File.open(filename, 'w') { |f| lines.each { |line| f.puts line } } end |