Class: MHL::GeneticAlgorithmSolver

Inherits:
Object
  • Object
show all
Defined in:
lib/mhl/genetic_algorithm_solver.rb

Instance Method Summary collapse

Constructor Details

#initialize(opts) ⇒ GeneticAlgorithmSolver

Returns a new instance of GeneticAlgorithmSolver.


11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# File 'lib/mhl/genetic_algorithm_solver.rb', line 11

def initialize(opts)
  @population_size = opts[:population_size].to_i
  unless @population_size and @population_size.even?
    raise ArgumentError, 'Even population size required!'
  end

  # perform genotype space-specific configuration
  case opts[:genotype_space_type]
  when :integer
    @genotype_space = IntegerVectorGenotypeSpace.new(opts[:genotype_space_conf])

    begin
      p_m = opts[:mutation_probability].to_f
      @mutation_rv = \
        ERV::RandomVariable.new(:distribution           => :geometric,
                                :probability_of_success => p_m)
    rescue
      raise ArgumentError, 'Mutation probability configuration is wrong.'
    end

    begin
      p_r = opts[:recombination_probability].to_f
      @recombination_rv = \
        ERV::RandomVariable.new(:distribution => :uniform,
                                :min_value    => -p_r,
                                :max_value    => 1.0 + p_r)
    rescue
      raise ArgumentError, 'Recombination probability configuration is wrong.'
    end

  when :bitstring
    @genotype_space   = BitstringGenotypeSpace.new(opts[:genotype_space_conf])
    @recombination_rv = ERV::RandomVariable.new(:distribution => :uniform, :max_value => 1.0)
    @mutation_rv      = ERV::RandomVariable.new(:distribution => :uniform, :max_value => 1.0)

  else
    raise ArgumentError, 'Only integer and bitstring genotype representations are supported!'
  end

  @exit_condition   = opts[:exit_condition]
  @start_population = opts[:genotype_space_conf][:start_population]
end

Instance Method Details

#solve(func) ⇒ Object

This is the method that solves the optimization problem

Parameter func is supposed to be a method (or a Proc, a lambda, or any callable object) that accepts the genotype as argument (that is, the set of parameters) and returns the phenotype (that is, the function result)


60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# File 'lib/mhl/genetic_algorithm_solver.rb', line 60

def solve(func)
  # setup population
  if @start_population.nil?
    population = Array.new(@population_size) do
      # generate random genotype according to the chromosome type
      { :genotype => @genotype_space.get_random }
    end
  else
    population = @start_population.map do |x|
      { :genotype => x }
    end
  end

  # initialize variables
  gen = 0
  overall_best = nil

  # default behavior is to loop forever
  begin
    gen += 1
    puts "Starting generation #{gen} at #{Time.now}"

    # assess fitness for every member of the population
    population.each do |s|
      s[:task] = Concurrent::Future.new { func.call(s[:genotype]) }
    end

    # wait for all the evaluations to end
    population.each do |s|
      s[:fitness] = s[:task].value
    end

    # find fittest member
    population_best = population.max_by {|x| x[:fitness] }

    # calculate overall best
    if overall_best.nil?
      overall_best = population_best
    else
      overall_best = [ overall_best, population_best ].max_by {|x| x[:fitness] }
    end

    # print results
    puts "> gen #{gen}, best: #{overall_best[:genotype]}, #{overall_best[:fitness]}"

    # selection by binary tournament
    children = new_generation(population)

    # update population and generation number
    population = children
  end while @exit_condition.nil? or !@exit_condition.call(gen, overall_best)
end