Module: Bitcoin::OpenSSL_EC
- Extended by:
- FFI::Library
- Defined in:
- lib/bitcoin/ffi/openssl.rb
Constant Summary collapse
- NID_secp256k1 =
714
- POINT_CONVERSION_COMPRESSED =
2
- POINT_CONVERSION_UNCOMPRESSED =
4
Class Method Summary collapse
- .BN_num_bytes(ptr) ⇒ Object
-
.der_to_private_key(der_hex) ⇒ Object
extract private key from uncompressed DER format.
-
.ec_add(point_0, point_1) ⇒ Object
lifted from github.com/GemHQ/money-tree.
- .init_ffi_ssl ⇒ Object
- .recover_compact(hash, signature) ⇒ Object
-
.recover_public_key_from_signature(message_hash, signature, rec_id, is_compressed) ⇒ Object
Given the components of a signature and a selector value, recover and return the public key that generated the signature according to the algorithm in SEC1v2 section 4.1.6.
-
.regenerate_key(private_key) ⇒ Object
resolve public from private key, using ffi and libssl.so example: keypair = Bitcoin.generate_key; Bitcoin::OpenSSL_EC.regenerate_key(keypair.first) == keypair.
-
.repack_der_signature(signature) ⇒ Object
repack signature for OpenSSL 1.0.1k handling of DER signatures github.com/bitcoin/bitcoin/pull/5634/files.
- .sign_compact(hash, private_key, public_key_hex = nil, pubkey_compressed = nil) ⇒ Object
-
.signature_to_low_s(signature) ⇒ Object
Regenerate a DER-encoded signature such that the S-value complies with the BIP62 specification.
Class Method Details
.BN_num_bytes(ptr) ⇒ Object
74 |
# File 'lib/bitcoin/ffi/openssl.rb', line 74 def self.BN_num_bytes(ptr); (BN_num_bits(ptr) + 7) / 8; end |
.der_to_private_key(der_hex) ⇒ Object
extract private key from uncompressed DER format
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# File 'lib/bitcoin/ffi/openssl.rb', line 134 def self.der_to_private_key(der_hex) init_ffi_ssl #k = EC_KEY_new_by_curve_name(NID_secp256k1) #kp = FFI::MemoryPointer.new(:pointer).put_pointer(0, eckey) buf = FFI::MemoryPointer.from_string([der_hex].pack("H*")) ptr = FFI::MemoryPointer.new(:pointer).put_pointer(0, buf) #ec_key = d2i_ECPrivateKey(kp, ptr, buf.size-1) ec_key = d2i_ECPrivateKey(nil, ptr, buf.size-1) return nil if ec_key.null? bn = EC_KEY_get0_private_key(ec_key) BN_bn2bin(bn, buf) buf.read_string(32).unpack("H*")[0] end |
.ec_add(point_0, point_1) ⇒ Object
lifted from github.com/GemHQ/money-tree
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# File 'lib/bitcoin/ffi/openssl.rb', line 337 def self.ec_add(point_0, point_1) init_ffi_ssl eckey = EC_KEY_new_by_curve_name(NID_secp256k1) group = EC_KEY_get0_group(eckey) point_0_hex = point_0.to_bn.to_s(16) point_0_pt = EC_POINT_hex2point(group, point_0_hex, nil, nil) point_1_hex = point_1.to_bn.to_s(16) point_1_pt = EC_POINT_hex2point(group, point_1_hex, nil, nil) sum_point = EC_POINT_new(group) success = EC_POINT_add(group, sum_point, point_0_pt, point_1_pt, nil) hex = EC_POINT_point2hex(group, sum_point, POINT_CONVERSION_UNCOMPRESSED, nil) EC_KEY_free(eckey) EC_POINT_free(sum_point) hex end |
.init_ffi_ssl ⇒ Object
379 380 381 382 383 384 385 386 |
# File 'lib/bitcoin/ffi/openssl.rb', line 379 def self.init_ffi_ssl return if @ssl_loaded SSL_library_init() ERR_load_crypto_strings() SSL_load_error_strings() RAND_poll() @ssl_loaded = true end |
.recover_compact(hash, signature) ⇒ Object
325 326 327 328 329 330 331 332 333 334 |
# File 'lib/bitcoin/ffi/openssl.rb', line 325 def self.recover_compact(hash, signature) return false if signature.bytesize != 65 msg32 = FFI::MemoryPointer.new(:uchar, 32).put_bytes(0, hash) version = signature.unpack('C')[0] return false if version < 27 or version > 34 compressed = (version >= 31) ? (version -= 4; true) : false pubkey = recover_public_key_from_signature(msg32.read_string(32), signature, version-27, compressed) end |
.recover_public_key_from_signature(message_hash, signature, rec_id, is_compressed) ⇒ Object
Given the components of a signature and a selector value, recover and return the public key that generated the signature according to the algorithm in SEC1v2 section 4.1.6.
rec_id is an index from 0 to 3 that indicates which of the 4 possible keys is the correct one. Because the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the signature, or you must be willing to try each rec_id in turn until you find one that outputs the key you are expecting.
If this method returns nil, it means recovery was not possible and rec_id should be iterated.
Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the output is nil OR a key that is not the one you expect, you try again with the next rec_id.
= hash of the signed .
signature = the R and S components of the signature, wrapped.
rec_id = which possible key to recover.
is_compressed = whether or not the original pubkey was compressed.
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# File 'lib/bitcoin/ffi/openssl.rb', line 171 def self.recover_public_key_from_signature(, signature, rec_id, is_compressed) return nil if rec_id < 0 or signature.bytesize != 65 init_ffi_ssl signature = FFI::MemoryPointer.from_string(signature) #signature_bn = BN_bin2bn(signature, 65, BN_new()) r = BN_bin2bn(signature[1], 32, BN_new()) s = BN_bin2bn(signature[33], 32, BN_new()) n, i = 0, rec_id / 2 eckey = EC_KEY_new_by_curve_name(NID_secp256k1) EC_KEY_set_conv_form(eckey, POINT_CONVERSION_COMPRESSED) if is_compressed group = EC_KEY_get0_group(eckey) order = BN_new() EC_GROUP_get_order(group, order, nil) x = BN_dup(order) BN_mul_word(x, i) BN_add(x, x, r) field = BN_new() EC_GROUP_get_curve_GFp(group, field, nil, nil, nil) if BN_cmp(x, field) >= 0 [r, s, order, x, field].each{|i| BN_free(i) } EC_KEY_free(eckey) return nil end big_r = EC_POINT_new(group) EC_POINT_set_compressed_coordinates_GFp(group, big_r, x, rec_id % 2, nil) big_q = EC_POINT_new(group) n = EC_GROUP_get_degree(group) e = BN_bin2bn(, .bytesize, BN_new()) BN_rshift(e, e, 8 - (n & 7)) if 8 * .bytesize > n ctx = BN_CTX_new() zero, rr, sor, eor = BN_new(), BN_new(), BN_new(), BN_new() BN_set_word(zero, 0) BN_mod_sub(e, zero, e, order, ctx) BN_mod_inverse(rr, r, order, ctx) BN_mod_mul(sor, s, rr, order, ctx) BN_mod_mul(eor, e, rr, order, ctx) EC_POINT_mul(group, big_q, eor, big_r, sor, ctx) EC_KEY_set_public_key(eckey, big_q) BN_CTX_free(ctx) [r, s, order, x, field, e, zero, rr, sor, eor].each{|i| BN_free(i) } [big_r, big_q].each{|i| EC_POINT_free(i) } length = i2o_ECPublicKey(eckey, nil) buf = FFI::MemoryPointer.new(:uint8, length) ptr = FFI::MemoryPointer.new(:pointer).put_pointer(0, buf) pub_hex = if i2o_ECPublicKey(eckey, ptr) == length buf.read_string(length).unpack("H*")[0] end EC_KEY_free(eckey) pub_hex end |
.regenerate_key(private_key) ⇒ Object
resolve public from private key, using ffi and libssl.so example:
keypair = Bitcoin.generate_key; Bitcoin::OpenSSL_EC.regenerate_key(keypair.first) == keypair
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# File 'lib/bitcoin/ffi/openssl.rb', line 80 def self.regenerate_key(private_key) private_key = [private_key].pack("H*") if private_key.bytesize >= (32*2) private_key_hex = private_key.unpack("H*")[0] #private_key = FFI::MemoryPointer.new(:uint8, private_key.bytesize) # .put_bytes(0, private_key, 0, private_key.bytesize) private_key = FFI::MemoryPointer.from_string(private_key) init_ffi_ssl eckey = EC_KEY_new_by_curve_name(NID_secp256k1) #priv_key = BN_bin2bn(private_key, private_key.size, BN_new()) priv_key = BN_bin2bn(private_key, private_key.size-1, BN_new()) group, order, ctx = EC_KEY_get0_group(eckey), BN_new(), BN_CTX_new() EC_GROUP_get_order(group, order, ctx) pub_key = EC_POINT_new(group) EC_POINT_mul(group, pub_key, priv_key, nil, nil, ctx) EC_KEY_set_private_key(eckey, priv_key) EC_KEY_set_public_key(eckey, pub_key) BN_free(order) BN_CTX_free(ctx) EC_POINT_free(pub_key) BN_free(priv_key) length = i2d_ECPrivateKey(eckey, nil) buf = FFI::MemoryPointer.new(:uint8, length) ptr = FFI::MemoryPointer.new(:pointer).put_pointer(0, buf) priv_hex = if i2d_ECPrivateKey(eckey, ptr) == length size = buf.get_array_of_uint8(8, 1)[0] buf.get_array_of_uint8(9, size).pack("C*").rjust(32, "\x00").unpack("H*")[0] #der_to_private_key( ptr.read_pointer.read_string(length).unpack("H*")[0] ) end if priv_hex != private_key_hex raise "regenerated wrong private_key, raise here before generating a faulty public_key too!" end length = i2o_ECPublicKey(eckey, nil) buf = FFI::MemoryPointer.new(:uint8, length) ptr = FFI::MemoryPointer.new(:pointer).put_pointer(0, buf) pub_hex = if i2o_ECPublicKey(eckey, ptr) == length buf.read_string(length).unpack("H*")[0] end EC_KEY_free(eckey) [ priv_hex, pub_hex ] end |
.repack_der_signature(signature) ⇒ Object
repack signature for OpenSSL 1.0.1k handling of DER signatures github.com/bitcoin/bitcoin/pull/5634/files
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# File 'lib/bitcoin/ffi/openssl.rb', line 358 def self.repack_der_signature(signature) init_ffi_ssl return false if signature.empty? # New versions of OpenSSL will reject non-canonical DER signatures. de/re-serialize first. norm_der = FFI::MemoryPointer.new(:pointer) sig_ptr = FFI::MemoryPointer.new(:pointer).put_pointer(0, FFI::MemoryPointer.from_string(signature)) norm_sig = d2i_ECDSA_SIG(nil, sig_ptr, signature.bytesize) derlen = i2d_ECDSA_SIG(norm_sig, norm_der) ECDSA_SIG_free(norm_sig) return false if derlen <= 0 ret = norm_der.read_pointer.read_string(derlen) OPENSSL_free(norm_der.read_pointer) ret end |
.sign_compact(hash, private_key, public_key_hex = nil, pubkey_compressed = nil) ⇒ Object
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# File 'lib/bitcoin/ffi/openssl.rb', line 279 def self.sign_compact(hash, private_key, public_key_hex = nil, pubkey_compressed = nil) msg32 = FFI::MemoryPointer.new(:uchar, 32).put_bytes(0, hash) private_key = [private_key].pack("H*") if private_key.bytesize >= 64 private_key_hex = private_key.unpack("H*")[0] public_key_hex = regenerate_key(private_key_hex).last unless public_key_hex pubkey_compressed = (public_key_hex[0..1] == "04" ? false : true) unless pubkey_compressed init_ffi_ssl eckey = EC_KEY_new_by_curve_name(NID_secp256k1) priv_key = BN_bin2bn(private_key, private_key.bytesize, BN_new()) group, order, ctx = EC_KEY_get0_group(eckey), BN_new(), BN_CTX_new() EC_GROUP_get_order(group, order, ctx) pub_key = EC_POINT_new(group) EC_POINT_mul(group, pub_key, priv_key, nil, nil, ctx) EC_KEY_set_private_key(eckey, priv_key) EC_KEY_set_public_key(eckey, pub_key) signature = ECDSA_do_sign(msg32, msg32.size, eckey) BN_free(order) BN_CTX_free(ctx) EC_POINT_free(pub_key) BN_free(priv_key) EC_KEY_free(eckey) buf, rec_id, head = FFI::MemoryPointer.new(:uint8, 32), nil, nil r, s = signature.get_array_of_pointer(0, 2).map{|i| BN_bn2bin(i, buf); buf.read_string(BN_num_bytes(i)).rjust(32, "\x00") } if signature.get_array_of_pointer(0, 2).all?{|i| BN_num_bits(i) <= 256 } 4.times{|i| head = [ 27 + i + (pubkey_compressed ? 4 : 0) ].pack("C") if public_key_hex == recover_public_key_from_signature(msg32.read_string(32), [head, r, s].join, i, pubkey_compressed) rec_id = i; break end } end ECDSA_SIG_free(signature) [ head, [r,s] ].join if rec_id end |
.signature_to_low_s(signature) ⇒ Object
Regenerate a DER-encoded signature such that the S-value complies with the BIP62 specification.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# File 'lib/bitcoin/ffi/openssl.rb', line 238 def self.signature_to_low_s(signature) init_ffi_ssl buf = FFI::MemoryPointer.new(:uint8, 34) temp = signature.unpack("C*") length_r = temp[3] length_s = temp[5+length_r] sig = FFI::MemoryPointer.from_string(signature) # Calculate the lower s value s = BN_bin2bn(sig[6 + length_r], length_s, BN_new()) eckey = EC_KEY_new_by_curve_name(NID_secp256k1) group, order, halforder, ctx = EC_KEY_get0_group(eckey), BN_new(), BN_new(), BN_CTX_new() EC_GROUP_get_order(group, order, ctx) BN_rshift1(halforder, order) if BN_cmp(s, halforder) > 0 BN_sub(s, order, s) end BN_free(halforder) BN_free(order) BN_CTX_free(ctx) length_s = BN_bn2bin(s, buf) # p buf.read_string(length_s).unpack("H*") # Re-encode the signature in DER format sig = [0x30, 0, 0x02, length_r] sig.concat(temp.slice(4, length_r)) sig << 0x02 sig << length_s sig.concat(buf.read_string(length_s).unpack("C*")) sig[1] = sig.size - 2 BN_free(s) EC_KEY_free(eckey) sig.pack("C*") end |