Class: Baffle::Probe
- Inherits:
-
Object
- Object
- Baffle::Probe
- Defined in:
- lib/baffle/probe.rb
Instance Attribute Summary collapse
-
#capture_procs ⇒ Object
readonly
Returns the value of attribute capture_procs.
-
#filter_procs ⇒ Object
readonly
Returns the value of attribute filter_procs.
-
#injection_proc ⇒ Object
readonly
Returns the value of attribute injection_proc.
-
#injection_values ⇒ Object
readonly
Returns the value of attribute injection_values.
-
#name ⇒ Object
readonly
Returns the value of attribute name.
-
#training_data ⇒ Object
readonly
Returns the value of attribute training_data.
Instance Method Summary collapse
- #capture(name, &block) ⇒ Object
- #compute_vector(&block) ⇒ Object
- #filter(name, &block) ⇒ Object
-
#hypothesize(vector) ⇒ Object
Build a hash of hypotheses on the given vector, with confidence ratings on each hypothesis.
-
#initialize(name, &block) ⇒ Probe
constructor
A new instance of Probe.
- #inject(car, *cdr, &block) ⇒ Object
-
#learn ⇒ Object
Gets called when all training samples have been loaded.
- #repeat(count) ⇒ Object
- #repeats ⇒ Object
- #run(options, &block) ⇒ Object
Constructor Details
#initialize(name, &block) ⇒ Probe
Returns a new instance of Probe.
59 60 61 62 63 64 65 66 67 68 69 70 |
# File 'lib/baffle/probe.rb', line 59 def initialize(name, &block) @name = name @training_data = Hash.new {|hash, key| hash[key] = []} @names = [] @injection_values = nil @injection_proc = nil @filter_procs = {} @capture_procs = {} @repeat = 1 instance_eval(&block) end |
Instance Attribute Details
#capture_procs ⇒ Object (readonly)
Returns the value of attribute capture_procs.
57 58 59 |
# File 'lib/baffle/probe.rb', line 57 def capture_procs @capture_procs end |
#filter_procs ⇒ Object (readonly)
Returns the value of attribute filter_procs.
57 58 59 |
# File 'lib/baffle/probe.rb', line 57 def filter_procs @filter_procs end |
#injection_proc ⇒ Object (readonly)
Returns the value of attribute injection_proc.
57 58 59 |
# File 'lib/baffle/probe.rb', line 57 def injection_proc @injection_proc end |
#injection_values ⇒ Object (readonly)
Returns the value of attribute injection_values.
57 58 59 |
# File 'lib/baffle/probe.rb', line 57 def injection_values @injection_values end |
#name ⇒ Object (readonly)
Returns the value of attribute name.
57 58 59 |
# File 'lib/baffle/probe.rb', line 57 def name @name end |
#training_data ⇒ Object (readonly)
Returns the value of attribute training_data.
57 58 59 |
# File 'lib/baffle/probe.rb', line 57 def training_data @training_data end |
Instance Method Details
#capture(name, &block) ⇒ Object
128 129 130 |
# File 'lib/baffle/probe.rb', line 128 def capture(name, &block) @capture_procs[name] = block end |
#compute_vector(&block) ⇒ Object
120 121 122 |
# File 'lib/baffle/probe.rb', line 120 def compute_vector(&block) @compute_vector = block end |
#filter(name, &block) ⇒ Object
124 125 126 |
# File 'lib/baffle/probe.rb', line 124 def filter(name, &block) @filter_procs[name] = block end |
#hypothesize(vector) ⇒ Object
Build a hash of hypotheses on the given vector, with confidence ratings on each hypothesis
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# File 'lib/baffle/probe.rb', line 171 def hypothesize(vector) similarities = [] = Linalg::DMatrix[vector] * @u2 * @eig2.inv @v2.rows.each_with_index do |row, i| similarities << [@names[i], .transpose.dot(row.transpose) / (row.norm * .norm)] end sorted_similarities = similarities.delete_if { |name, score| score.nan? }.sort_by { |name, score| -score } name, score = sorted_similarities.first name ||= 'Unknown' score ||= 'NaN' "#{name} (#{score})" end |
#inject(car, *cdr, &block) ⇒ Object
114 115 116 117 118 |
# File 'lib/baffle/probe.rb', line 114 def inject(car, *cdr, &block) @injection_proc = block @injection_values = car.to_a rescue [] @injection_values = @injection_values.product(*cdr.map{ |v| v.to_a rescue []}) end |
#learn ⇒ Object
Gets called when all training samples have been loaded
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# File 'lib/baffle/probe.rb', line 141 def learn # The code below assumes at least two training values, and doing it with any fewer # doesn't make much sense anyway return false if @training_data.size < 2 # Doing it this way to make sure we have the same row/column order in names as we do in our matrix. # (there are no guarantees that two iterations over the pairs in a hash will have the same order) row_matrix, @names = @training_data.inject([[], []]) do |result, pair| result[0] += pair[1] pair[1].length.times { result[1] << pair[0] } result end # We need a matrix of column vectors column_matrix = row_matrix.transpose m = Linalg::DMatrix[*column_matrix] u, s, vt = m.singular_value_decomposition vt = vt.transpose # Do we want more than 2 dimensions? TODO: test other numbers of dimensions @u2 = Linalg::DMatrix.join_columns [u.column(0), u.column(1)] @v2 = Linalg::DMatrix.join_columns [vt.column(0), vt.column(1)] @eig2 = Linalg::DMatrix.columns [s.column(0).to_a.flatten[0,2], s.column(1).to_a.flatten[0,2]] true end |
#repeat(count) ⇒ Object
132 133 134 |
# File 'lib/baffle/probe.rb', line 132 def repeat(count) @repeat = count end |
#repeats ⇒ Object
136 137 138 |
# File 'lib/baffle/probe.rb', line 136 def repeats @repeat end |
#run(options, &block) ⇒ Object
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# File 'lib/baffle/probe.rb', line 72 def run(, &block) unless .train? return nil unless learn end samples = [] @repeat.times do |i| samples[i] = [] filters = {} @filter_procs.each do |name, filter_proc| filter = filter_proc.call() case filter when Dot11::Packet filter = Dot11::PacketSet.new(Dot11::Dot11, :payload => filter) if !filter.kind_of?(Dot11::Dot11) when Dot11::PacketSet puts "filter is Dot11::PacketSet" filter = Dot11::PacketSet.new(Dot11::Dot11, :payload => filter) if filter.packet_class != Dot11::Dot11 end filters[name] = Capture::Filter.new(filter.to_filter) end sniff_thread = Thread.new do filter = filters.values.map { |filter| "(#{filter.expression})" }.join(" || ") Baffle::sniff(:device => .capture, :filter => filter) do |packet| filters.each do |name, filter| samples[i] << @capture_procs[name].call(packet) if filter =~ packet.data end end end Baffle::emit(, @injection_proc, @injection_values, &block) sniff_thread.kill end @vector = @compute_vector.call(samples) end |