Module: ObjectSpace
- Defined in:
- objspace.c,
lib/objspace.rb,
objspace.c,
objspace_dump.c,
object_tracing.c
Overview
The objspace library extends the ObjectSpace module and adds several methods to get internal statistic information about object/memory management.
You need to require 'objspace'
to use this extension module.
Generally, you SHOULD NOT use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.
Defined Under Namespace
Classes: InternalObjectWrapper
Class Method Summary collapse
-
._dump(obj, output) ⇒ Object
:nodoc:.
-
._dump_all(output, full, since, shapes) ⇒ Object
:nodoc:.
-
._dump_shapes(output, shapes) ⇒ Object
:nodoc:.
-
.allocation_class_path(object) ⇒ String
Returns the class for the given
object
. -
.allocation_generation(object) ⇒ Integer?
Returns garbage collector generation for the given
object
. -
.allocation_method_id(object) ⇒ String
Returns the method identifier for the given
object
. -
.allocation_sourcefile(object) ⇒ String
Returns the source file origin from the given
object
. -
.allocation_sourceline(object) ⇒ Integer
Returns the original line from source for from the given
object
. -
.count_imemo_objects([result_hash]) ⇒ Hash
Counts objects for each
T_IMEMO
type. -
.count_nodes([result_hash]) ⇒ Hash
Counts nodes for each node type.
-
.count_objects_size([result_hash]) ⇒ Hash
Counts objects size (in bytes) for each type.
-
.count_symbols([result_hash]) ⇒ Hash
Counts symbols for each Symbol type.
-
.count_tdata_objects([result_hash]) ⇒ Hash
Counts objects for each
T_DATA
type. -
.dump(obj, output: :string) ⇒ Object
Dump the contents of a ruby object as JSON.
-
.dump_all(output: :file, full: false, since: nil, shapes: true) ⇒ Object
Dump the contents of the ruby heap as JSON.
-
.dump_shapes(output: :file, since: 0) ⇒ Object
Dump the contents of the ruby shape tree as JSON.
-
.internal_class_of(obj) ⇒ Class, Module
- MRI specific feature
-
Return internal class of obj.
-
.internal_super_of(cls) ⇒ Class, Module
- MRI specific feature
-
Return internal super class of cls (Class or Module).
-
.memsize_of(obj) ⇒ Integer
Return consuming memory size of obj in bytes.
-
.memsize_of_all([klass]) ⇒ Integer
Return consuming memory size of all living objects in bytes.
-
.reachable_objects_from(obj) ⇒ Array?
- MRI specific feature
-
Return all reachable objects from ‘obj’.
-
.reachable_objects_from_root ⇒ Hash
- MRI specific feature
-
Return all reachable objects from root.
-
.trace_object_allocations { ... } ⇒ Object
Starts tracing object allocations from the ObjectSpace extension module.
-
.trace_object_allocations_clear ⇒ Object
Clear recorded tracing information.
- .trace_object_allocations_debug_start ⇒ Object
-
.trace_object_allocations_start ⇒ Object
Starts tracing object allocations.
-
.trace_object_allocations_stop ⇒ Object
Stop tracing object allocations.
Class Method Details
._dump(obj, output) ⇒ Object
:nodoc:
740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
# File 'objspace_dump.c', line 740
static VALUE
objspace_dump(VALUE os, VALUE obj, VALUE output)
{
struct dump_config dc = {0,};
if (!RB_SPECIAL_CONST_P(obj)) {
dc.cur_page_slot_size = rb_gc_obj_slot_size(obj);
}
dump_output(&dc, output, Qnil, Qnil, Qnil);
dump_object(obj, &dc);
return dump_result(&dc);
}
|
._dump_all(output, full, since, shapes) ⇒ Object
:nodoc:
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
# File 'objspace_dump.c', line 814
static VALUE
objspace_dump_all(VALUE os, VALUE output, VALUE full, VALUE since, VALUE shapes)
{
struct dump_config dc = {0,};
dump_output(&dc, output, full, since, shapes);
if (!dc.partial_dump || dc.since == 0) {
/* dump roots */
rb_objspace_reachable_objects_from_root(root_obj_i, &dc);
if (dc.roots) dump_append(&dc, "]}\n");
}
if (RTEST(shapes)) {
rb_shape_each_shape(shape_i, &dc);
}
/* dump all objects */
rb_objspace_each_objects(heap_i, &dc);
return dump_result(&dc);
}
|
._dump_shapes(output, shapes) ⇒ Object
:nodoc:
837 838 839 840 841 842 843 844 845 846 847 |
# File 'objspace_dump.c', line 837
static VALUE
objspace_dump_shapes(VALUE os, VALUE output, VALUE shapes)
{
struct dump_config dc = {0,};
dump_output(&dc, output, Qfalse, Qnil, shapes);
if (RTEST(shapes)) {
rb_shape_each_shape(shape_i, &dc);
}
return dump_result(&dc);
}
|
.allocation_class_path(object) ⇒ String
Returns the class for the given object
.
class A
def foo
ObjectSpace::trace_object_allocations do
obj = Object.new
p "#{ObjectSpace::allocation_class_path(obj)}"
end
end
end
A.new.foo #=> “Class”
See ::trace_object_allocations for more information and examples.
490 491 492 493 494 495 496 497 498 499 500 501 |
# File 'object_tracing.c', line 490
static VALUE
allocation_class_path(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info && info->class_path) {
return rb_str_new2(info->class_path);
}
else {
return Qnil;
}
}
|
.allocation_generation(object) ⇒ Integer?
Returns garbage collector generation for the given object
.
class B
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "Generation is #{allocation_generation(obj)}"
end
end
end
B.new.foo #=> “Generation is 3”
See ::trace_object_allocations for more information and examples.
555 556 557 558 559 560 561 562 563 564 565 |
# File 'object_tracing.c', line 555
static VALUE
allocation_generation(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return SIZET2NUM(info->generation);
}
else {
return Qnil;
}
}
|
.allocation_method_id(object) ⇒ String
Returns the method identifier for the given object
.
class A
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "#{allocation_class_path(obj)}##{allocation_method_id(obj)}"
end
end
end
A.new.foo #=> “Class#new”
See ::trace_object_allocations for more information and examples.
523 524 525 526 527 528 529 530 531 532 533 |
# File 'object_tracing.c', line 523
static VALUE
allocation_method_id(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return info->mid;
}
else {
return Qnil;
}
}
|
.allocation_sourcefile(object) ⇒ String
Returns the source file origin from the given object
.
See ::trace_object_allocations for more information and examples.
439 440 441 442 443 444 445 446 447 448 449 450 |
# File 'object_tracing.c', line 439
static VALUE
allocation_sourcefile(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info && info->path) {
return rb_str_new2(info->path);
}
else {
return Qnil;
}
}
|
.allocation_sourceline(object) ⇒ Integer
Returns the original line from source for from the given object
.
See ::trace_object_allocations for more information and examples.
459 460 461 462 463 464 465 466 467 468 469 470 |
# File 'object_tracing.c', line 459
static VALUE
allocation_sourceline(VALUE self, VALUE obj)
{
struct allocation_info *info = lookup_allocation_info(obj);
if (info) {
return INT2FIX(info->line);
}
else {
return Qnil;
}
}
|
.count_imemo_objects([result_hash]) ⇒ Hash
Counts objects for each T_IMEMO
type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
{:imemo_ifunc=>8,
:imemo_svar=>7,
:imemo_cref=>509,
:imemo_memo=>1,
:imemo_throw_data=>1}
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation specific and may change in the future.
In this version, keys are symbol objects.
This method is only expected to work with C Ruby.
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
# File 'objspace.c', line 487
static VALUE
count_imemo_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
if (imemo_type_ids[0] == 0) {
#define INIT_IMEMO_TYPE_ID(n) (imemo_type_ids[n] = rb_intern_const(#n))
INIT_IMEMO_TYPE_ID(imemo_env);
INIT_IMEMO_TYPE_ID(imemo_cref);
INIT_IMEMO_TYPE_ID(imemo_svar);
INIT_IMEMO_TYPE_ID(imemo_throw_data);
INIT_IMEMO_TYPE_ID(imemo_ifunc);
INIT_IMEMO_TYPE_ID(imemo_memo);
INIT_IMEMO_TYPE_ID(imemo_ment);
INIT_IMEMO_TYPE_ID(imemo_iseq);
INIT_IMEMO_TYPE_ID(imemo_tmpbuf);
INIT_IMEMO_TYPE_ID(imemo_ast);
INIT_IMEMO_TYPE_ID(imemo_parser_strterm);
INIT_IMEMO_TYPE_ID(imemo_callinfo);
INIT_IMEMO_TYPE_ID(imemo_callcache);
INIT_IMEMO_TYPE_ID(imemo_constcache);
#undef INIT_IMEMO_TYPE_ID
}
each_object_with_flags(count_imemo_objects_i, (void *)hash);
return hash;
}
|
.count_nodes([result_hash]) ⇒ Hash
Counts nodes for each node type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
:NODE_FBODY=>1927, :NODE_CFUNC=>1798, …
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
Note: The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
362 363 364 365 366 |
# File 'objspace.c', line 362
static VALUE
count_nodes(int argc, VALUE *argv, VALUE os)
{
return setup_hash(argc, argv);
}
|
.count_objects_size([result_hash]) ⇒ Hash
Counts objects size (in bytes) for each type.
Note that this information is incomplete. You need to deal with this information as only a HINT. Especially, total size of T_DATA may be wrong.
It returns a hash as:
{:TOTAL=>1461154, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249, ...}
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# File 'objspace.c', line 248
static VALUE
count_objects_size(int argc, VALUE *argv, VALUE os)
{
size_t counts[T_MASK+1];
size_t total = 0;
enum ruby_value_type i;
VALUE hash = setup_hash(argc, argv);
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
each_object_with_flags(cos_i, &counts[0]);
for (i = 0; i <= T_MASK; i++) {
if (counts[i]) {
VALUE type = type2sym(i);
total += counts[i];
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
return hash;
}
|
.count_symbols([result_hash]) ⇒ Hash
Counts symbols for each Symbol type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
Note: The contents of the returned hash is implementation defined. It may be changed in future.
This method is only expected to work with C Ruby.
On this version of MRI, they have 3 types of Symbols (and 1 total counts).
* mortal_dynamic_symbol: GC target symbols (collected by GC)
* immortal_dynamic_symbol: Immortal symbols promoted from dynamic symbols (do not collected by GC)
* immortal_static_symbol: Immortal symbols (do not collected by GC)
* immortal_symbol: total immortal symbols (immortal_dynamic_symbol+immortal_static_symbol)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# File 'objspace.c', line 322
static VALUE
count_symbols(int argc, VALUE *argv, VALUE os)
{
struct dynamic_symbol_counts dynamic_counts = {0, 0};
VALUE hash = setup_hash(argc, argv);
size_t immortal_symbols = rb_sym_immortal_count();
each_object_with_flags(cs_i, &dynamic_counts);
rb_hash_aset(hash, ID2SYM(rb_intern("mortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.mortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_dynamic_symbol")), SIZET2NUM(dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_static_symbol")), SIZET2NUM(immortal_symbols - dynamic_counts.immortal));
rb_hash_aset(hash, ID2SYM(rb_intern("immortal_symbol")), SIZET2NUM(immortal_symbols));
return hash;
}
|
.count_tdata_objects([result_hash]) ⇒ Hash
Counts objects for each T_DATA
type.
This method is only for MRI developers interested in performance and memory usage of Ruby programs.
It returns a hash as:
:parser=>5, :barrier=>6, :mutex=>6, Proc=>60, RubyVM::Env=>57, Mutex=>1, Encoding=>99, ThreadGroup=>1, Binding=>1, Thread=>1, RubyVM=>1, :iseq=>1, Random=>1, ARGF.class=>1, Data=>1, :autoload=>3, Time=>2 # T_DATA objects existing at startup on r32276.
If the optional argument, result_hash, is given, it is overwritten and returned. This is intended to avoid probe effect.
The contents of the returned hash is implementation specific and may change in the future.
In this version, keys are Class object or Symbol object.
If object is kind of normal (accessible) object, the key is Class object. If object is not a kind of normal (internal) object, the key is symbol name, registered by rb_data_type_struct.
This method is only expected to work with C Ruby.
427 428 429 430 431 432 433 |
# File 'objspace.c', line 427
static VALUE
count_tdata_objects(int argc, VALUE *argv, VALUE self)
{
VALUE hash = setup_hash(argc, argv);
each_object_with_flags(cto_i, (void *)hash);
return hash;
}
|
.dump(obj, output: :string) ⇒ Object
Dump the contents of a ruby object as JSON.
output can be one of: :stdout
, :file
, :string
, or IO object.
-
:file
means dumping to a tempfile and returning corresponding File object; -
:stdout
means printing the dump and returningnil
; -
:string
means returning a string with the dump; -
if an instance of IO object is provided, the output goes there, and the object is returned.
This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
# File 'lib/objspace.rb', line 28 def dump(obj, output: :string) out = case output when :file, nil require 'tempfile' Tempfile.create(%w(rubyobj .json)) when :stdout STDOUT when :string +'' when IO output else raise ArgumentError, "wrong output option: #{output.inspect}" end ret = _dump(obj, out) return nil if output == :stdout ret end |
.dump_all(output: :file, full: false, since: nil, shapes: true) ⇒ Object
Dump the contents of the ruby heap as JSON.
output argument is the same as for #dump.
full must be a boolean. If true, all heap slots are dumped including the empty ones (T_NONE
).
since must be a non-negative integer or nil
.
If since is a positive integer, only objects of that generation and newer generations are dumped. The current generation can be accessed using GC::count. Objects that were allocated without object allocation tracing enabled are ignored. See ::trace_object_allocations for more information and examples.
If since is omitted or is nil
, all objects are dumped.
shapes must be a boolean or a non-negative integer.
If shapes is a positive integer, only shapes newer than the provided shape id are dumped. The current shape_id can be accessed using RubyVM.stat(:next_shape_id)
.
If shapes is false
, no shapes are dumped.
To only dump objects allocated past a certain point you can combine since and shapes:
ObjectSpace.trace_object_allocations
GC.start
gc_generation = GC.count
shape_generation = RubyVM.stat(:next_shape_id)
call_method_to_instrument
ObjectSpace.dump_all(since: gc_generation, shapes: shape_generation)
This method is only expected to work with C Ruby. This is an experimental method and is subject to change. In particular, the function signature and output format are not guaranteed to be compatible in future versions of ruby.
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
# File 'lib/objspace.rb', line 84 def dump_all(output: :file, full: false, since: nil, shapes: true) out = case output when :file, nil require 'tempfile' Tempfile.create(%w(rubyheap .json)) when :stdout STDOUT when :string +'' when IO output else raise ArgumentError, "wrong output option: #{output.inspect}" end shapes = 0 if shapes == true ret = _dump_all(out, full, since, shapes) return nil if output == :stdout ret end |
.dump_shapes(output: :file, since: 0) ⇒ Object
Dump the contents of the ruby shape tree as JSON.
_output_ argument is the same as for #dump.
If _since_ is a positive integer, only shapes newer than the provided
shape id are dumped. The current shape_id can be accessed using <tt>RubyVM.stat(:next_shape_id)</tt>.
This method is only expected to work with C Ruby.
This is an experimental method and is subject to change.
In particular, the function signature and output format are
not guaranteed to be compatible in future versions of ruby.
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# File 'lib/objspace.rb', line 116 def dump_shapes(output: :file, since: 0) out = case output when :file, nil require 'tempfile' Tempfile.create(%w(rubyshapes .json)) when :stdout STDOUT when :string +'' when IO output else raise ArgumentError, "wrong output option: #{output.inspect}" end ret = _dump_shapes(out, since) return nil if output == :stdout ret end |
.internal_class_of(obj) ⇒ Class, Module
- MRI specific feature
-
Return internal class of obj.
obj can be an instance of InternalObjectWrapper.
Note that you should not use this method in your application.
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
# File 'objspace.c', line 756
static VALUE
objspace_internal_class_of(VALUE self, VALUE obj)
{
VALUE klass;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
if (RB_TYPE_P(obj, T_IMEMO)) {
return Qnil;
}
else {
klass = CLASS_OF(obj);
return wrap_klass_iow(klass);
}
}
|
.internal_super_of(cls) ⇒ Class, Module
- MRI specific feature
-
Return internal super class of cls (Class or Module).
obj can be an instance of InternalObjectWrapper.
Note that you should not use this method in your application.
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
# File 'objspace.c', line 783
static VALUE
objspace_internal_super_of(VALUE self, VALUE obj)
{
VALUE super;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
switch (OBJ_BUILTIN_TYPE(obj)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
super = RCLASS_SUPER(obj);
break;
default:
rb_raise(rb_eArgError, "class or module is expected");
}
return wrap_klass_iow(super);
}
|
.memsize_of(obj) ⇒ Integer
Return consuming memory size of obj in bytes.
Note that the return size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA
may not be correct.
This method is only expected to work with C Ruby.
From Ruby 2.2, memsize_of(obj) returns a memory size includes sizeof(RVALUE).
47 48 49 50 51 |
# File 'objspace.c', line 47
static VALUE
memsize_of_m(VALUE self, VALUE obj)
{
return SIZET2NUM(rb_obj_memsize_of(obj));
}
|
.memsize_of_all([klass]) ⇒ Integer
Return consuming memory size of all living objects in bytes.
If klass
(should be Class object) is given, return the total memory size of instances of the given class.
Note that the returned size is incomplete. You need to deal with this information as only a HINT. Especially, the size of T_DATA
may not be correct.
Note that this method does NOT return total malloc’ed memory size.
This method can be defined by the following Ruby code:
def memsize_of_all klass = false total = 0 ObjectSpace.each_object{|e| total += ObjectSpace.memsize_of(e) if klass == false || e.kind_of?(klass) } total end
This method is only expected to work with C Ruby.
136 137 138 139 140 141 142 143 144 145 146 147 |
# File 'objspace.c', line 136
static VALUE
memsize_of_all_m(int argc, VALUE *argv, VALUE self)
{
struct total_data data = {0, 0};
if (argc > 0) {
rb_scan_args(argc, argv, "01", &data.klass);
}
each_object_with_flags(total_i, &data);
return SIZET2NUM(data.total);
}
|
.reachable_objects_from(obj) ⇒ Array?
- MRI specific feature
-
Return all reachable objects from ‘obj’.
This method returns all reachable objects from ‘obj’.
If ‘obj’ has two or more references to the same object ‘x’, then returned array only includes one ‘x’ object.
If ‘obj’ is a non-markable (non-heap management) object such as true, false, nil, symbols and Fixnums (and Flonum) then it simply returns nil.
If ‘obj’ has references to an internal object, then it returns instances of ObjectSpace::InternalObjectWrapper class. This object contains a reference to an internal object and you can check the type of internal object with ‘type’ method.
If ‘obj’ is instance of ObjectSpace::InternalObjectWrapper class, then this method returns all reachable object from an internal object, which is pointed by ‘obj’.
With this method, you can find memory leaks.
This method is only expected to work except with C Ruby.
Example:
ObjectSpace.reachable_objects_from(['a', 'b', 'c'])
#=> [Array, 'a', 'b', 'c']
ObjectSpace.reachable_objects_from(['a', 'a', 'a'])
#=> [Array, 'a', 'a', 'a'] # all 'a' strings have different object id
ObjectSpace.reachable_objects_from([v = 'a', v, v])
#=> [Array, 'a']
ObjectSpace.reachable_objects_from(1)
#=> nil # 1 is not markable (heap managed) object
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
# File 'objspace.c', line 644
static VALUE
reachable_objects_from(VALUE self, VALUE obj)
{
if (rb_objspace_markable_object_p(obj)) {
struct rof_data data;
if (rb_typeddata_is_kind_of(obj, &iow_data_type)) {
obj = (VALUE)DATA_PTR(obj);
}
data.refs = rb_obj_hide(rb_ident_hash_new());
data.values = rb_ary_new();
rb_objspace_reachable_objects_from(obj, reachable_object_from_i, &data);
return data.values;
}
else {
return Qnil;
}
}
|
.reachable_objects_from_root ⇒ Hash
- MRI specific feature
-
Return all reachable objects from root.
719 720 721 722 723 724 725 726 727 728 729 730 |
# File 'objspace.c', line 719
static VALUE
reachable_objects_from_root(VALUE self)
{
struct rofr_data data;
VALUE hash = data.categories = rb_ident_hash_new();
data.last_category = 0;
rb_objspace_reachable_objects_from_root(reachable_object_from_root_i, &data);
rb_hash_foreach(hash, collect_values_of_values, hash);
return hash;
}
|
.trace_object_allocations { ... } ⇒ Object
Starts tracing object allocations from the ObjectSpace extension module.
For example:
require ‘objspace’
class C
include ObjectSpace
def foo
trace_object_allocations do
obj = Object.new
p "#{allocation_sourcefile(obj)}:#{allocation_sourceline(obj)}"
end
end
end
C.new.foo #=> “objtrace.rb:8”
This example has included the ObjectSpace module to make it easier to read, but you can also use the ::trace_object_allocations notation (recommended).
Note that this feature introduces a huge performance decrease and huge memory consumption.
362 363 364 365 366 367 |
# File 'object_tracing.c', line 362
static VALUE
trace_object_allocations(VALUE self)
{
trace_object_allocations_start(self);
return rb_ensure(rb_yield, Qnil, trace_object_allocations_stop, self);
}
|
.trace_object_allocations_clear ⇒ Object
Clear recorded tracing information.
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# File 'object_tracing.c', line 318
static VALUE
trace_object_allocations_clear(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
/* clear tables */
st_foreach(arg->object_table, free_values_i, 0);
st_clear(arg->object_table);
st_foreach(arg->str_table, free_keys_i, 0);
st_clear(arg->str_table);
/* do not touch TracePoints */
return Qnil;
}
|
.trace_object_allocations_debug_start ⇒ Object
402 403 404 405 406 407 408 409 410 411 412 |
# File 'object_tracing.c', line 402
static VALUE
trace_object_allocations_debug_start(VALUE self)
{
tmp_keep_remains = 1;
if (object_allocations_reporter_registered == 0) {
object_allocations_reporter_registered = 1;
rb_bug_reporter_add(object_allocations_reporter, 0);
}
return trace_object_allocations_start(self);
}
|
.trace_object_allocations_start ⇒ Object
Starts tracing object allocations.
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# File 'object_tracing.c', line 262
static VALUE
trace_object_allocations_start(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
if (arg->running++ > 0) {
/* do nothing */
}
else {
if (arg->newobj_trace == 0) {
arg->newobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_NEWOBJ, newobj_i, arg);
arg->freeobj_trace = rb_tracepoint_new(0, RUBY_INTERNAL_EVENT_FREEOBJ, freeobj_i, arg);
}
rb_tracepoint_enable(arg->newobj_trace);
rb_tracepoint_enable(arg->freeobj_trace);
}
return Qnil;
}
|
.trace_object_allocations_stop ⇒ Object
Stop tracing object allocations.
Note that if ::trace_object_allocations_start is called n-times, then tracing will stop after calling ::trace_object_allocations_stop n-times.
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# File 'object_tracing.c', line 291
static VALUE
trace_object_allocations_stop(VALUE self)
{
struct traceobj_arg *arg = get_traceobj_arg();
if (arg->running > 0) {
arg->running--;
}
if (arg->running == 0) {
if (arg->newobj_trace != 0) {
rb_tracepoint_disable(arg->newobj_trace);
}
if (arg->freeobj_trace != 0) {
rb_tracepoint_disable(arg->freeobj_trace);
}
}
return Qnil;
}
|