bip-schnorrrb

This is a Ruby implementation of the Schnorr signature scheme over the elliptic curve. This implementation relies on the ecdsa gem for operate elliptic curves.
The code is based upon the BIP340.
Installation
Add this line to your application's Gemfile:
gem 'bip-schnorr', require: 'schnorr'
And then execute:
$ bundle
Or install it yourself as:
$ gem install bip-schnorr
Usage
Signing
require 'schnorr'
private_key = ['B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF'].pack("H*")
= ['5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C'].pack('H*')
# create signature
signature = Schnorr.sign(, private_key)
# if use auxiliary random data, specify it to the 3rd arguments.
aux_rand = SecureRandom.bytes(32) # aux_rand must be a 32-byte binary.
signature = Schnorr.sign(, private_key, aux_rand)
# signature r value
signature.r
# signature s value
signature.s
# convert signature to binary
signature.encode
Verification
require 'schnorr'
# public key does not start with 02 or 03.
public_key = ['DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659'].pack('H*')
signature = ['6896BD60EEAE296DB48A229FF71DFE071BDE413E6D43F917DC8DCF8C78DE33418906D11AC976ABCCB20B091292BFF4EA897EFCB639EA871CFA95F6DE339E4B0A'].pack('H*')
= ['243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89'].pack('H*')
# verify signature.(result is true or false)
result = Schnorr.valid_sig?(, public_key, signature)
# signature convert to Signature object
sig = Schnorr::Signature.decode(signature)
Note
This library changes the following functions of ecdsa
gem in lib/schnorr/ec_point_ext.rb
.
ECDSA::Point
class has following two instance methods.#has_even_y?
check the y-coordinate of this point is an even.#encode(only_x = false)
encode this point into a binary string.
ECDSA::Format::PointOctetString#decode
supports decoding only from x coordinate.